
11/8/2017

1

Database Systems
CSE 414

Lecture 27:
Transaction Implementations

CSE 414 - Fall 2017 1

Announcements

• Final exam will be on Dec. 14 (next
Thursday) 14:30-16:20 in class
– Note the time difference, the exam will last ~2

hours

• Bring your laptop to the lecture on
Wednesday

CSE 414 - Fall 2017 2

Recap

• What are transactions?
– Why do we need them?

• Maintain ACID properties via schedules
– We focus on the isolation property

– We briefly discussed consistency & durability

– We do not discuss atomicity

• Ensure conflict-serializable schedules with locks

CSE 414 - Fall 2017 3

Implementing a Scheduler

Major differences between database vendors

• Locking Scheduler
– Aka “pessimistic concurrency control”

– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”

– Postgres, Oracle

We discuss only locking in 414We discuss only locking in 414

4CSE 414 - Fall 2017

Locking Scheduler

Simple idea:

• Each element has a unique lock

• Each transaction must first acquire the lock
before reading/writing that element

• If lock is taken by another transaction, then wait

• The transaction must release the lock(s)

CSE 414 - Fall 2017 5

By using locks, scheduler can ensure conflict-serializabilityBy using locks, scheduler can ensure conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc.
– can be even more fine-grained by having different types of

locks (allows more txns to run simultaneously)

CSE 414 - Fall 2017 6

11/8/2017

2

SQLite

CSE 414 - Fall 2017 7

NoneNone READ
LOCK
READ
LOCK

RESERVED
LOCK

RESERVED
LOCK

PENDING
LOCK

PENDING
LOCK

EXCLUSIVE
LOCK

EXCLUSIVE
LOCK

commit executed

begin transaction first write no more read lockscommit requested

commit

Locks in the Abstract

8CSE 414 - Fall 2017

Notation

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

9CSE 414 - Fall 2017

A Non-Serializable Schedule

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

10CSE 414 - Fall 2017

Example
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

11CSE 414 - Fall 2017

Scheduler has ensured a conflict-serializable scheduleScheduler has ensured a conflict-serializable schedule

But…
T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?Locks did not enforce conflict-serializability !!! What’s wrong ?

CSE 414 - Fall 2017 12

11/8/2017

3

Two Phase Locking (2PL)

CSE 414 - Fall 2017 13

In every transaction, all lock requests
must precede all unlock requests
In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

2PL approach developed by Jim Gray

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);

Now it is conflict-serializableNow it is conflict-serializable
14CSE 414 - Fall 2017

Two Phase Locking (2PL)

15

Theorem: 2PL ensures conflict serializabilityTheorem: 2PL ensures conflict serializability

CSE 414 - Fall 2017

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializabilityTheorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1T1

T2T2

T3T3

BA

C

CSE 414 - Fall 2017 16

Two Phase Locking (2PL)

17

Theorem: 2PL ensures conflict serializabilityTheorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1T1

T2T2

T3T3

BA

C

Then there is the
following temporal
cycle in the schedule:

CSE 414 - Fall 2017

Two Phase Locking (2PL)

18

Theorem: 2PL ensures conflict serializabilityTheorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1T1

T2T2

T3T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)L2(A) why?

CSE 414 - Fall 2017

11/8/2017

4

Two Phase Locking (2PL)

19

Theorem: 2PL ensures conflict serializabilityTheorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1T1

T2T2

T3T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)L2(A)
L2(A)U2(B) why?

CSE 414 - Fall 2017

Two Phase Locking (2PL)

20

Theorem: 2PL ensures conflict serializabilityTheorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1T1

T2T2

T3T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)L2(A)
L2(A)U2(B)
U2(B)L3(B)
L3(B)U3(C)
U3(C)L1(C)
L1(C)U1(A)

ContradictionContradiction
CSE 414 - Fall 2017

A New Problem:
Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

21CSE 414 - Fall 2017

Strict 2PL

CSE 414 - Fall 2017 22

All locks are held until the transaction
commits or aborts.
All locks are held until the transaction
commits or aborts.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…

L1(B); READ(B)

B :=B+100

WRITE(B);

ROLLBACK; U1(A),U1(B)

…GRANTED; READ(A)

A := A*2

WRITE(A);
L2(B); READ(B)
B := B*2

WRITE(B);

COMMIT; U2(A); U2(B)
23CSE 414 - Fall 2017

Another problem: Deadlocks

• T1 waits for a lock held by T2;

• T2 waits for a lock held by T3;

• T3 waits for

• . . .

• Tn waits for a lock held by T1

24CSE 414 - Fall 2017

SQL Lite: there is only one exclusive lock; thus, never deadlocksSQL Lite: there is only one exclusive lock; thus, never deadlocks

SQL Server: checks periodically for deadlocks and aborts one TXNSQL Server: checks periodically for deadlocks and aborts one TXN

11/8/2017

5

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

25CSE 414 - Fall 2017

None S X

None

S

X

Lock compatibility matrix:Lock compatibility matrix:

Lock Modes

• S = shared lock (for READ)
• X = exclusive lock (for WRITE)

26CSE 414 - Fall 2017

None S X

None ✔ ✔ ✔
S ✔ ✔ ✖
X ✔ ✖ ✖

Lock compatibility matrix:Lock compatibility matrix:

27

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks
– E.g. SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g. SQLite

• Solution: lock escalation changes granularity as needed

CSE 414 - Fall 2017

Lock Performance

CSE 414 - Fall 2017 28

T
hr

ou
gh

pu
t (

T
P

S
)

Active Transactions

thrashing

Why ?Why ?

TPS =
Transactions
per second

TPS =
Transactions
per second

To avoid, use
admission control

To avoid, use
admission control

29

Phantom Problem

• So far we have assumed the database to
be a static collection of elements (=tuples)

• If tuples are inserted/deleted then the
phantom problem appears

CSE 414 - Fall 2017

Phantom Problem

Is this schedule serializable ?Is this schedule serializable ?

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’, ‘blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products A1 & A2

CSE 414 - Fall 2017 30

11/8/2017

6

Phantom Problem

31

R1(A1), R1(A2), W2(A3), R1(A1), R1(A2), R1(A3)R1(A1), R1(A2), W2(A3), R1(A1), R1(A2), R1(A3)

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’, ‘blue’)

SELECT *
FROM Product
WHERE color=‘blue’

CSE 414 - Fall 2017

Suppose there are two blue products A1 & A2
Phantom Problem

32

R1(A1), R1(A2), W2(A3), R1(A1), R1(A2), R1(A3)R1(A1), R1(A2), W2(A3), R1(A1), R1(A2), R1(A3)

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’, ‘blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products A1 & A2

CSE 414 - Fall 2017

W2(A3), R1(A1), R1(A2), R1(A1), R1(A2), R1(A3)W2(A3), R1(A1), R1(A2), R1(A1), R1(A2), R1(A3)

33

Phantom Problem

• A “phantom” is a tuple that is invisible during part
of a transaction execution, but not invisible during
the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSE 414 - Fall 2017

Dealing With Phantoms

• Lock the entire table

• Lock the index entry for ‘blue’
– If index is available

• Or use predicate locks
– A lock on an arbitrary predicate

Dealing with phantoms is expensive !Dealing with phantoms is expensive !
CSE 414 - Fall 2017 34

Locking & SQL

35CSE 414 - Fall 2017 36

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

CSE 414 - Fall 2017

11/8/2017

7

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

37

Possible problems: dirty and inconsistent readsPossible problems: dirty and inconsistent reads

CSE 414 - Fall 2017

2. Isolation Level: Read Committed

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

38

Unrepeatable reads
When reading same element twice,
may get two different values

Unrepeatable reads
When reading same element twice,
may get two different values

CSE 414 - Fall 2017

3. Isolation Level: Repeatable Read

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

39

This is not serializable yet !!!This is not serializable yet !!!

Why ?

CSE 414 - Fall 2017

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

40CSE 414 - Fall 2017

Beware!

In commercial DBMSs:

• Default level is often NOT serializable (SQL Server!)

• Default level differs between DBMSs

• Some engines support subset of levels

• Serializable may not be exactly ACID
– Locking ensures isolation, not atomicity

• Also, some DBMSs do NOT use locking. Different
isolation levels can lead to different problems

• Bottom line: Read the doc for your DBMS!

CSE 414 - Fall 2017 41

Next two slides: try them on Azure

CSE 414 - Fall 2017 42

11/8/2017

8

Demonstration with SQL Server

Application 1:
create table R(a int);
insert into R values(1);
set transaction isolation level serializable;
begin transaction;
select * from R; -- get a shared lock
waitfor delay '00:01'; -- wait for one minute

Application 2:
set transaction isolation level serializable;
begin transaction;
select * from R; -- get a shared lock
insert into R values(2); -- blocked waiting on exclusive lock

-- App 2 unblocks and executes insert after app 1 commits/aborts

CSE 414 - Fall 2017 43

Demonstration with SQL Server

Application 1:
create table R(a int);
insert into R values(1);
set transaction isolation level repeatable read;
begin transaction;
select * from R; -- get a shared lock
waitfor delay '00:01'; -- wait for one minute

Application 2:
set transaction isolation level repeatable read;
begin transaction;
select * from R; -- get a shared lock
insert into R values(3); -- gets an exclusive lock on new tuple

-- If app 1 reads now, it blocks because read dirty
-- If app 1 reads after app 2 commits, app 1 sees new value

CSE 414 - Fall 2017 44

