Database Systems
CSE 414

Lecture 20: Introduction to Transactions

CSE 414 - Spring 2017

Announcements

« HWG6 due on Wednesday

« WQG6 available for one more day
« WQY7 (last one!) due on Sunday

CSE 414 - Spring 2017

Data Management Pipeline

Application

programmer

Schema

designer product | T~

Conceptual Schema

Database I — |
administrator D

Physical Schema 3

Demo
(see lec20-transactions-intro.sql)

CSE 414 - Spring 2017

Challenges

* Want to execute many apps concurrently
— All these apps read and write data to the same DB

« Simple solution: only serve one app at a time
— What's the problem?

« Better: multiple operations need to be
executed atomically over the DB

CSE 414 - Spring 2017 5

What can go wrong?

 Manager: balance budgets among projects
— Remove $10k from project A
— Add $7k to project B
— Add $3k to project C

 CEO: check company’s total balance
— SELECT SUM(money) FROM budget;

* This is called a dirty / inconsistent read aka
WRITE-READ conflict

CSE 414 - Spring 2017

What can go wrong?

App 1:
SELECT inventory FROM products WHERE pid = 1

App 2:
UPDATE products SET inventory = 0 WHERE pid = 1

App 1:
SELECT inventory * price FROM products
WHERE pid =1

This is known as an unrepeatable read aka
READ-WRITE conflict

CSE 414 - Spring 2017

What can go wrong?

Account 1 = $100
Account 2 = $100
Total = $200

* App 1: * App 1: Set Account 1 = $200
— Set Account 1 = $200

— Set Account 2 =$0 * App 2: SetAccount 2 = $200

* App 2 * App 1: SetAccount 2 = $0
— Set Account 2 = $200

— Set Account 1 = $0 * App 2: SetAccount 1 = $0

» At the end: « At the end:
— Total = $200 — Total = $0

This is called the lost update aka WRITE-WRITE confllct

CSE 414 - Spring 2017

What can go wrong??

* Buying tickets to the next Bieber concert:
— Fill up form with your mailing address
— Put in debit card number
— Click submit
— Screen shows money deducted from your account
— [Your browser crashes]

00 Changes to the database
', :) should be ALL or NOTHING
Z

CSE 414 - Spring 2017 9

Transactions

* Collection of statements that are executed
atomically (logically speaking)

BEGIN TRANSACTION
[SQL statements]

COMMIT or

ROLLBACK (=ABORT)

[single SQL statement]

If BEGIN... missing,

then TXN consists
of a single instruction

CSE 414 - Spring 2017

Transactions Demo
(see lec20-transactions-intro.sql)

CSE 414 - Spring 2017 11

Serial execution

 Definition: A SERIAL execution of
transactions is one where each transaction is
executed one after another.

* Fact: Nothing can go wrong if the DB
executes transactions serially.

* Definition: A SERIALIZABLE execution of
transactions is one that is equivalent to a
serial execution

CSE 414 - Spring 2017 12

ACID Transactions

Atomic
— State shows either all the effects of txn, or none of them
Consistent

— Txn moves from a state where integrity holds, to
another where integrity holds

|Isolated

— Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

Durable

— Once a txn has committed, its effects remain in the
database

CSE 414 - Spring 2017 13

Atomic

 Definition: A transaction is ATOMIC if all
its updates must happen or not at all.

« Example: move $100 from Ato B

UPDATE accounts SET bal = bal — 100
WHERE acct =A;] Crash!
UPDATE accounts SET bal = bal + 100

WHERE acct = B;

BEGIN TRANSACTION;

UPDATE accounts SET bal = bal — 100 WHERE acct = A;
UPDATE accounts SET bal = bal + 100 WHERE acct = B;
COMMIT;

|solated

 Definition An execution ensures that txns are
Isolated, if the effect of each txn is as if it
were the only txn running on the system.

« Example: Alice deposits $100, Bob
withdraws $100 from account

BEGIN TRANSACTION; BEGIN TRANSACTION;
. | x=select bal from accounts Bob: | y = select bal from accounts
Alice: where acct = A- where acct = A;
x = x+100 if y <100 return “Error”

update accounts y=y-100

set bal = x where acct = A; update accounts
COMMIT; set bal =y where acct = A;

COMMIT:

Consistent

Recall: integrity constraints govern how values in
tables are related to each other

— Example: account.bal >=0

— Example: foreign key constraints

Can be enforced by the DBMS or by the app

How consistency is achieved by the app:

— App programmer ensures that txns only takes a
consistent DB state to another consistent state

— DB makes sure that txns are executed atomically

Can defer checking the validity of constraints
until the end of a transaction

Durable

A transaction is durable if its effects continue
to exist after the transaction and even after
the program has terminated

 How? By writing to disk
— (often multiple disks since individual disks fail)

CSE 414 - Spring 2017

17

Rollback transactions

* |If the app gets to a state where it cannot
complete the transaction successfully,
execute ROLLBACK

* The DB returns to the state prior to the
transaction

CSE 414 - Spring 2017

18

ACID

Atomic
Consistent
|solated
Durable

Enjoy this in HW7!

Note: by default each statement is its own txn

— Exception: if auto-commit is off, then each statement
starts a new txn

CSE 414 - Spring 2017 19

Transactions

Jim Gray

Inventor of ACID transactions, 2PL, data cubes, ...
Joined Microsoft in 1995

Won the Turing Award in 1998

His book “Transaction Processing” is probably still
the best work on database implementation

CSE 414 - Spring 2017 20

