Database Systems
CSE 414

Lecture 25: MapReduce

CSE 414 - Spring 2017 1

Announcements
HW?7 due tonight

HWS8 (Spark): will be posted shortly
— Section tomorrow on setting up Spark on AWS
— Create your AWS account before arriving
— Follow the first part of the Spark setup instructions
(“Setting up an AWS account”) to get credits for free use
+ https:/courses.c: 414/17sp/spark/spark-setup.html
« note that this may take a while to process
— Remember to terminate cluster when not in use!l!
Otherwise you will be charged lots of $$$$

CSE 414 - Spring 2017 2

Optional Reading

+ Original paper:
https://www.usenix.org/legacy/events/osdi04/t
ech/dean.html

Rebuttal to a comparison with parallel DBs:
http://dl.acm.org/citation.cfm?doid=1629175.1
629198

Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html

CSE 414 - Spring 2017 3

Distributed File System (DFS)

For very large files: TBs, PBs

Each file is partitioned into chunks, typically
64MB

Each chunk is replicated several times (23),
on different racks, for fault tolerance
Implementations:

— Google’s DFS: GFS, proprietary

— Hadoop’s DFS: HDFS, open source

CSE 414 - Spring 2017 4

MapReduce

» Google: paper published 2004
» Free variant: Hadoop

* MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

CSE 414 - Spring 2017 5

MapReduce Process

Read a lot of data (records)
Map: extract info you want from each record
Shuffle and Sort
Reduce: aggregate, summarize, filter, transform
Write the results

Paradigm stays the same,

change map and reduce
functions for different problems

CSE 414 - Spring 2017 6
slide source: Jeff Dean

Data Model

Files!
A file = a bag of (key, value) pairs
A MapReduce program:

* Input: a bag of (inputkey, value) pairs
» Output: a bag of (outputkey, value) pairs

CSE 414 - Spring 2017 7

Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, value)
* Ouput:

bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file

CSE 414 - Spring 2017 8

Step 2: the REDUCE Phase

User provides the REDUCE function:
e Input:
(intermediate key, bag of values)
» Output: bag of output (key, value) pairs

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE
function

Example

» Counting the number of occurrences of each
word in a large collection of documents

» Each Document
— The key = document id (did)
— The value = set of words (word)

reduce(String key, lterator values):
/I key: a word
/I values: a list of counts

map(String key, String value):
/l key: document name
/I value: document contents

. int result = 0;
for each word w in value: .
R . wqm. for each v in values:
Emitintermediate(w, “17); .
result += 1;

Emit(key, AsString(result));

CSE 414 - Spring 2017 9
MAP REDUCE
—> | w11
(did1,v1)[—>[wen | SHufle
d TN w1, (1,1,1,...,1)) —>| w1,25)
. w2, (11,...)) —>| w277
(did2,V2) > wi1) (W3,(1...)) —> | w3, 12)
—> | (w2.1) . il
(did3,v3) _,7\ :
CSE 414 - Spring 2017 1"

Jobs & Tasks

* A MapReduce Job
— One single “query”, e.g. count the words in all docs
— More complex queries may consists of multiple jobs

* A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker

CSE 414 - Spring 2017 12

Workers

» A worker is a process that executes one task
at a time

 Typically there is one worker per processor,
hence 4 or 8 per node

Fault Tolerance

« If one server fails once every year...
... then a job with 10,000 servers will fail in less
than one hour

» MapReduce handles fault tolerance by writing
intermediate files to disk:
— Mappers write file to local disk
— Reducers read the files (=reshuffling); if the server
fails, the reduce task is restarted on another server

CSE 414 - Spring 2017 14

MapReduce Execution Details

i i Output to disk,
l ’ replicated in cluster

Reduce Task

Intermediate data
goes to local disk:
M x R files (why?)

Data not
necessarily local

File system: GFS
or HDFS

(Shuffle)

CSE 414 - Spring 2017

CSE 414 - Spring 2017 13
MAP Tasks REDUCE Tasks
—> | wi,1) Shuffle /
(did1,v1) |~ [wan) s N
g (w3,1) (w1, (1,1,1,...,1)) —_ (w1, 25)
>< w2, (1.1,...)) —> | w2, 77)
(did2,v2) || w1 3(1..)) —>[ws12)
—> | (w2,1)
(did3,v3) —>7\
J
CSE 414 - Spring 2017 15
MapReduce Phases
Map Task Reduce Task
{P1} (P2} {P 3} {P 4} {P 5}

T 5
Record Reader—#Map —#Combine :I——> Copy Reduce
i I |

0 =
—L

HDFS

CSE 414 - Spring 2017 17

Implementation

* There is one master node
» Master partitions input file into M splits, by key

» Master assigns workers (=servers) to the M map
tasks, keeps track of their progress

» Workers write their output to local disk, partition
into R regions

» Master assigns workers to the R reduce tasks

» Reduce workers read regions from the map
workers’ local disks

CSE 414 - Spring 2017 18

Interesting Implementation Details
Worker failure:
» Master pings workers periodically,
+ If down, then reassigns the task to another

worker

CSE 414 - Spring 2017 19

Interesting Implementation Details

Backup tasks:
» Straggler = a machine that takes unusually long
time to complete one of the last tasks. Eg:
— Bad disk forces frequent correctable errors (30MB/s >
1MBI/s)
— The cluster scheduler has scheduled other tasks on
that machine

» Stragglers are a main reason for slowdown

» Solution: pre-emptive backup execution of the
last few remaining in-progress tasks

CSE 414 - Spring 2017 20

Issues with MapReduce
« Difficult to write more complex queries

» Need multiple MapReduce jobs: dramatically
slows down because it writes all results to disk
— more recent systems work in memory

» Next lecture: Spark

CSE 414 - Spring 2017 21

Relational Operators in
MapReduce

Given relations R(A,B) and S(B, C) compute:
» Selection: 0a=123(R)

. Group-byi VA,sum(B)(R)

« Join: R™Ss

CSE 414 - Spring 2017 22

Selection 0a-1,3(R)

map(String value):
if value.A=123:
Emitintermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:
Emit(v);

23

Selection 0a-1,3(R)

map(String value):
if value.A=123:

Emitintermediate(value.key, value);
No need for reduce.

reduce(String \,l(e/or values):
for each v i S:
Em%{m\
But need system hacking

to remove reduce from MapReduce 24

Grou p By VA,sum(B)(R)

map(String value):
EmitIntermediate(value.A, value.B);

Join
Two simple parallel join algorithms:
» Partitioned hash-join

» Broadcast join

CSE 414 - Spring 2017 26

reduce(String k, Iterator values):
s=0
for each v in values:
s=s+v
Emit(k, s);
2!
R(A,B) *g-¢ S(C,D)
Partitioned Hash-Join
Initially, both R and S are horizontally partitioned
Reshuffle R on R.B
Each server computes
the join locally
CSE 414 - Spring 2017 27

R(A,B) *g-¢ S(C,D)

Partitioned Hash-Join

map(String value):
case value.relationName of
‘R’: Emitintermediate(value.B, (‘R’, value));
‘S”: Emitintermediate(value.C, (‘S’, value));

reduce(String k, lterator values):
R = empty; S =empty;
for each v in values:
case v.type of:
‘R’: R.insert(v)
‘S’ S.insert(v);
forv1inR, forv2in S
Emit(v1,v2);

R(A,B) *g-¢c S(C,D)

Broadcast Join

Broadcast S
Reshuffle Ron R.B

CSE 414 - Spring 2017 29

R(A,B) *g-¢c S(C,D)

Broadcast Join

map should read
several records of R:
value = some group

of records

map(String value):
open(S); /* over the network */

hashTbl = new() - @
. build a Hash Table
for each win S:
hashTbl.insert(w.C, w)

close(S);

for each w in hashTbl.find(value.B)
Emit(v,w);

reduce(...):
/* empty: map-side only */

Conclusions

» MapReduce offers a simple abstraction, and
handles distribution + fault tolerance

» Speedup/scaleup achieved by allocating
dynamically map tasks and reduce tasks to
available server. However, skew is possible
(e.g. one huge reduce task)

Writing intermediate results to disk is
necessary for fault tolerance, but very slow.
Spark replaces this with “Resilient Distributed
Datasets” = main memory + lineage

Conclusions Il

Widely used in industry
— Google Search, machine learning, etc.
— looks good on a resume

Has been generalized (see Google DataFlow)

Harder to use than necessary

— language is imperative not declarative (i.e., you
have to actually write code)

