Introduction to Database Systems
CSE 414

Lecture 11: NoSQL

CSE 414 - Autumn 2018

Announcements

« HW 3 due Friday

— Upload data with DataGrip editor — see
message board

— Azure timeout for question 5:
« Try DataGrip or SQLite

« HW 2 Grades and Feedback out
— Check feedback, some tag errors

« HW 4 posted today, due week from
Tuesday

CSE 414 - Autumn 2018

Class Overview

Unit 1: Intro
Unit 2: Relational Data Models and Query Languages

Unit 3: Non-relational data
— NoSQL

— Json
— SQL++

Unit 4. RDMBS internals and query optimization

Unit 5: Parallel query processing

Unit 6: DBMS usability, conceptual design

Unit 7: Transactions

Unit 8: Advanced topics (time permitting) 3

Two Classes of
Database Applications

 OLTP (Online Transaction Processing)

— Queries are simple lookups: 0 or 1 join
E.g., find customer by ID and their orders

— Many updates. E.g., insert order, update payment
— Consistency is critical: transactions (more later)

* OLAP (Online Analytical Processing)

— aka “Decision Support”

— Queries have many joins, and group-by’s
E.g., sum revenues by store, product, clerk, date

— No updates

CSE 414 - Autumn 2018

NoSQL Motivation

Originally motivated by Web 2.0 applications
— E.g. Facebook, Amazon, Instagram, etc

— Web startups need to scaleup from 10 to 100000
users very quickly

Needed: very large scale OLTP workloads
Give up on consistency

Give up OLAP

CSE 414 - Autumn 2018

Desktop

DBMS
Application
(SQLite)

\

o

BMS Review: Serverless

SQLite:

One data file
One user
One DBMS application

Consistency is easy

But only a limited number of
scenarios work with such model

Data file

CSE 414 - Autumn 2018 6

RDBMS Review: Client-Server

Server Mac@

File

File

File

1

2

FIRTIRE]

3

DB Server

One server running the database

Many clients, connecting via the ODBC or JDBC
(Java Database Connectivity) protocol

Client
Applications

RDBMS Review: Client-Server

Many users and apps

Server Machine

File

File

File

1

2

FIRTIRE]

3

DB Server

Consistency is harder -
transactions

One server running the database

Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

Client
Applications

Client-Server

* One server that runs the DBMS (or RDBMS):

— Your own desktop, or
— Some beefy system, or
— A cloud service (SQL Azure)

CSE 414 - Autumn 2018

Client-Server

* One server that runs the DBMS (or RDBMS):
— Your own desktop, or
— Some beefy system, or
— A cloud service (SQL Azure)

« Many clients run apps and connect to DBMS
— Microsoft’'s Management Studio (for SQL Server), or
— psql (for postgres)
— Some Java program (HW8) or some C++ program

CSE 414 - Autumn 2018 10

Client-Server

* One server that runs the DBMS (or RDBMS):
— Your own desktop, or
— Some beefy system, or
— A cloud service (SQL Azure)

« Many clients run apps and connect to DBMS
— Microsoft's Management Studio (for SQL Server), or
— psql (for postgres)
— Some Java program (HW8) or some C++ program

* Clients “talk™ to server using JDBC/ODBC
protocol

CSE 414 - Autumn 2018 11

Web Apps: 3 Tier

File 2\ v
DB Server

CSE 414 - Autumn 2018 12

Web Apps: 3 Tier

File

File

File

1

2

3

FIRTIRE]

Connection

(e.g., JDBC) |"

App+Web Server

CSE 414 - Autumn 2018

Web Apps: 3 Tier

[Web-based applications]

File 1

1 | Connection —_
File 2 (e.g., JDBC) |”

File 3

DB Server App+Web Server

FIRTIRE]

CSE 414 - Autumn 2018 14

Web Apps: 3 Tier

[Web-based applications] — /

File 1

APP+V\7 b Server

| | Connection [——
5 (e.g., JDBC)

HTTP/SSL

F| Ie 3 T E=EEE | App+Web Server

DB Server

—

FIRTIRE]

App+Web Server

Replicate

App server)g: 3 Tier

for scaleup
[Web-based appllcauv..oJ —
< ® /
File 1 = /

App+V\7 b Server

1 | Connection [—
(e.g., JDBC)

File 2

HTTP/SSL

File 3

FIRTIRE]

DB Server —

Why not replicate DB server?

App+V\7 b Server

Replicate

App server)g: 3 Tier

for scaleup
[Web-based appllcauv..oJ —
< ® /
File 1 = /

App+Web Server

1 | Connection [—
File 2 (e.g., JDBC)

HTTP/SSL

App+Web Server

File 3

FIRTIRE]

DB Server —

Why not replicate DB server?
Consistency! pp+Vieh Server

Replicating the Database

 Two basic approaches:

— Scale up through partitioning
— Scale up through replication

« Consistency is much harder to enforce

CSE 414 - Autumn 2018

18

Scale Through Partitioning

« Partition the database across many machines in a cluster
— Database now fits in main memory
— Queries spread across these machines

e Can increase throughput
« Easy for writes but reads become expensive!

Application
updates$ here May also
update here

Three partitions
CSE 414 - Autumn 2018 19

Scale Through Replication

« Create multiple copies of each database partition
« Spread queries across these replicas

« Can increase throughput and lower latency

« Can also improve fault-tolerance

« Easy for reads but writes become expensive!

App 1 App 2
updates updates
here only

Three replicas here only
CSE 414 - Autumn 2018 20

Relational Model 2> NoSQL

« Relational DB: difficult to replicate/partition

« (iven Supplier(sno,..),Part(pno,..),Supply(sno,pno)
— Partition: we may be forced to join across servers
— Replication: local copy has inconsistent versions
— Consistency is hard in both cases (why?)

 NoSQL: simplified data model

— Given up on functionality

— Application must now handle joins and
consistency

CSE 414 - Autumn 2018

21

Data Models

Taxonomy based on data models:

= « Key-value stores
— e.g., Project Voldemort, Memcached

« Document stores
— e.g., SimpleDB, CouchDB, MongoDB

CSE 414 - Autumn 2018

22

Key-Value Stores Features

 Data model: (key,value) pairs

— Key = string/integer, unique for the entire data
— Value = can be anything (very complex object)

CSE 414 - Autumn 2018

23

Key-Value Stores Features

 Data model: (key,value) pairs

— Key = string/integer, unique for the entire data
— Value = can be anything (very complex object)

 Operations
- get(key), put(key,value)
— Operations on value not supported

CSE 414 - Autumn 2018

24

Key-Value Stores Features

 Data model: (key,value) pairs

— Key = string/integer, unique for the entire data
— Value = can be anything (very complex object)

 Operations
- get(key), put(key,value)
— Operations on value not supported

* Distribution / Partitioning

CSE 414 - Autumn 2018

25

Aside: Hash Functions

A function that maps any data to a "hash
value” (e.g., an integer)

hash
keys function hashes
00
John Smith
01
Lisa Smith -
03
04
Sam Doe
05
Sandra Dee '
15

CSE 414 - Autumn 2018 26

Aside: Hash Functions

 Example: data and hash value are integers

« Simple hash function:
- h(key) = key % 42;

- h(10) = 10
- h(2) = 2
- h(50) = 8

 \What does this have to do with data
distribution?

CSE 414 - Autumn 2018

27

Key-Value Stores Features

 Data model: (key,value) pairs
— Key = string/integer, unique for the entire data
— Value = can be anything (very complex object)
 Operations
- get(key), put(key,value)
— Operations on value not supported

 Distribution / Partitioning — w/ hash function

— No replication: key k is stored at server h(k)

— 3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work”? How does put(k,v) work?

28

Flights(fid, date, carrier, flight _num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

How does query processing work?

29

Flights(fid, date, carrier, flight _num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

« Option 1: key=fid, value=entire flight record

How does query processing work?

30

Flights(fid, date, carrier, flight num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

« Option 1: key=fid, value=entire flight record

« Option 2: key=date, value=all flights that day

How does query processing work?

31

Flights(fid, date, carrier, flight num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

« Option 1: key=fid, value=entire flight record
« Option 2: key=date, value=all flights that day

« Option 3: key=(origin,dest), value=all flights between

How does query processing work? 32

Data Models

Taxonomy based on data models:

» Key-value stores
— e.g., Project Voldemort, Memcached

= * Document stores
— e.g., SimpleDB, CouchDB, MongoDB

CSE 414 - Autumn 2018

33

Motivation

* In Key, Value stores, the Value is often a very
complex object
— Key =2010/7/1°, Value = [all flights that date]

 Better: allow DBMS to understand the value

— Represent value as a JSON (or XML...) document
— [all flights on that date] = a JSON file
— May search for all flights on a given date

CSE 414 - Autumn 2018 34

Document Stores Features

« Data model: (key,document) pairs
— Key = string/integer, unique for the entire data
— Document = JSon, or XML

 Operations
— Get/put document by key
— Query language over JSon
* Distribution / Partitioning
— Entire documents, as for key/value pairs

We will discuss JSon .35

Example: storing FB friends

OR

As a graph

We will learn the tradeoffs of different

@ew attri@

Person1 | Person2 |is friend
Peter John 1
John Mary 0
Mary Phil 1
Phil Peter 1

As a relation

data models later this quarter

CSE 414 - Autumn 2018

36

JSON

CSE 414 - Autumn 2018

37

JSON - Overview

« JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C,
C++, Java, Python, Perl, etc.

* The filename extension is .json.

We will emphasize JSon as semi-structured data

/ JSon Syntax

{ "book@

"id":"01",)
"language": "Java’,
"author": "H. Javeson”,
“year”. 2015 B,
"language": "C++",
"edition": "second"
"author": “E. Sepp’,

¢ _“price”: 22.25 >
) —

=

CSE 414 - Autumn 2018 39

JSon vs Relational

Relational data model

Rigid flat structure (tables)

Schema must be fixed in advanced

Binary representation: good for performance, bad for exchange
Query language based on Relational Calculus

Semistructured data model / JSon

Flexible, nested structure (trees)
Does not require predefined schema ("self describing”)
Text representation: good for exchange, bad for performance

— Most common use: Language API; query languages emerging

CSE 414 - Autumn 2018

40

JSon Terminology

« Data is represented in name/value pairs.

« Curly braces hold objects

— Each object is a list of name/value pairs separated
by , (comma)

— Each pair is a name is followed by ":'(colon)
followed by the value

« Square brackets hold arrays and values are
separated by ,(comma).

CSE 414 - Autumn 2018 41

JSon Data Structures

* Collections of name-value pairs:

— {"name1”: value1, "name2”: valuez, ...}
— The "name” is also called a “key”

 Ordered lists of values:
— [obj1, obj2, obj3, ...]

CSE 414 - Autumn 2018

42

Avoid Using Duplicate Keys

The standard allows them, but many implementations don't

"id":"07",
"title": "Databases”,
"author": "Garcia-Molina",
"author”: "Ullman”,
"author": "Widom"

)

"id":"07",
"title": "Databases”,
"author“@Sarcia-Molina",
"Ullman",

"Widon(@

)
CSE 414 - Autumn 2018 [43

JSon Datatypes

Number

String = double-quoted
Boolean = true or false
nullempty

CSE 414 - Autumn 2018

44

JSon Semantics: a Tree !

{*person”:
[{*name”: “Mary”,
“address”™: \
{“street”."Maple”,
“‘no”:3495, /

“city”: “Seattle”}},
{*name”: “John”,
*address”: “Thailand”,
“phone™:2345678}}

]
}

A

Crame S Cacress >

CSE 414 - Autumn 2018

CHIOTD

@

JSon Data

JSon is self-describing

Schema elements become part of the data
— Relational schema: person(name,phone)

LN 11 LA 11

— In Json “person”, “name”, “phone” are part of the
data, and are repeated many times

Consequence: JSon is much more flexible
JSon = semistructured data

CSE 414 - Autumn 2018

46

Mapping Relational Data to JSon

person

name phone name phone name phone
“dJohn” 3634 “Sue” 6343 “Dirk” 6363

Person

name phone

John 3634 {
Sue 6343

Dirk 6363

}

“person”:

[{“name”: “John”, “phone”:3634},
{"name”: “Sue”, "phone™6343},
{*name”: “Dirk”, "phone™:6383}

]

CSE 414 - Autumn 2018 47

Mapping Relational Data to JSon

May inline foreign keys

Person

name phone

John 3634

Sue 6343

Orders

personName |date |product
John 2002 | Gizmo
John 2004 | Gadget
Sue 2002 | Gadget

{“Person”:

[{“name”: “John”,
“phone™. 3646,
“Orders”:[{"date”:2002,
“product”."Gizmo’},
{*date”:2004,
“product”."Gadget”}

]
}
{fname”: “Sue”,
“phone™.6343,
“Orders™:[{"date”:2002,

“product”."Gadget”}
]

