
Introduction to Database Systems
CSE 414

Lecture 11: NoSQL

1CSE 414 - Autumn 2018

Announcements

• HW 3 due Friday

– Upload data with DataGrip editor – see

message board

– Azure timeout for question 5:

• Try DataGrip or SQLite

• HW 2 Grades and Feedback out

– Check feedback, some tag errors

• HW 4 posted today, due week from

Tuesday
CSE 414 - Autumn 2018 2

Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data

– NoSQL
– Json
– SQL++

• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions
• Unit 8: Advanced topics (time permitting) 3

Two Classes of
Database Applications

• OLTP (Online Transaction Processing)
– Queries are simple lookups: 0 or 1 join

E.g., find customer by ID and their orders
– Many updates. E.g., insert order, update payment
– Consistency is critical: transactions (more later)

• OLAP (Online Analytical Processing)
– aka “Decision Support”
– Queries have many joins, and group-by’s

E.g., sum revenues by store, product, clerk, date
– No updates

CSE 414 - Autumn 2018 4

NoSQL Motivation

• Originally motivated by Web 2.0 applications
– E.g. Facebook, Amazon, Instagram, etc
– Web startups need to scaleup from 10 to 100000

users very quickly

• Needed: very large scale OLTP workloads
• Give up on consistency
• Give up OLAP

5CSE 414 - Autumn 2018

RDBMS Review: Serverless

CSE 414 - Autumn 2018 6

User
SQLite:
• One data file
• One user
• One DBMS application

• Consistency is easy
• But only a limited number of

scenarios work with such model

DBMS
Application

(SQLite)

File

Desktop

Data file

Disk

RDBMS Review: Client-Server

Server Machine

Connection (JDBC, ODBC)

7

Client
Applications

• One server running the database
• Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

DB Server

File 1

File 2

File 3

RDBMS Review: Client-Server

Server Machine

Connection (JDBC, ODBC)

8

Client
Applications

• One server running the database
• Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

Many users and apps
Consistency is harder à

transactions

DB Server

File 1

File 2

File 3

9

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

CSE 414 - Autumn 2018

10

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or
– psql (for postgres)
– Some Java program (HW8) or some C++ program

CSE 414 - Autumn 2018

11

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or
– psql (for postgres)
– Some Java program (HW8) or some C++ program

• Clients “talk” to server using JDBC/ODBC
protocol

CSE 414 - Autumn 2018

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

12

Browser

CSE 414 - Autumn 2018

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

13

App+Web Server

Connection

(e.g., JDBC)

HTTP/SSL

Browser

CSE 414 - Autumn 2018

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

14

App+Web Server

Web-based applications

Connection
(e.g., JDBC)

HTTP/SSL

Browser

CSE 414 - Autumn 2018

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

15

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

16

Why not replicate DB server?

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

17

Why not replicate DB server?
Consistency!

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup

Replicating the Database

• Two basic approaches:
– Scale up through partitioning
– Scale up through replication

• Consistency is much harder to enforce

CSE 414 - Autumn 2018 18

Scale Through Partitioning

• Partition the database across many machines in a cluster
– Database now fits in main memory
– Queries spread across these machines

• Can increase throughput
• Easy for writes but reads become expensive!

CSE 414 - Autumn 2018 19

Application
updates here May also

update here
Three partitions

Scale Through Replication

• Create multiple copies of each database partition
• Spread queries across these replicas
• Can increase throughput and lower latency
• Can also improve fault-tolerance
• Easy for reads but writes become expensive!

CSE 414 - Autumn 2018 20

App 1
updates
here only

App 2
updates
here onlyThree replicas

Relational Model à NoSQL

• Relational DB: difficult to replicate/partition
• Given Supplier(sno,…),Part(pno,…),Supply(sno,pno)

– Partition: we may be forced to join across servers
– Replication: local copy has inconsistent versions
– Consistency is hard in both cases (why?)

• NoSQL: simplified data model
– Given up on functionality
– Application must now handle joins and

consistency

21CSE 414 - Autumn 2018

Data Models

Taxonomy based on data models:
• Key-value stores

– e.g., Project Voldemort, Memcached
• Document stores

– e.g., SimpleDB, CouchDB, MongoDB

CSE 414 - Autumn 2018 22

☞

Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

CSE 414 - Autumn 2018 •23

Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported

CSE 414 - Autumn 2018 •24

Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported

• Distribution / Partitioning

CSE 414 - Autumn 2018 •25

Aside: Hash Functions

• A function that maps any data to a “hash
value” (e.g., an integer)

CSE 414 - Autumn 2018 •26

Aside: Hash Functions

• Example: data and hash value are integers
• Simple hash function:

– h(key) = key % 42;

– h(10) = 10
– h(2) = 2
– h(50) = 8

• What does this have to do with data
distribution?

CSE 414 - Autumn 2018 •27

Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported

• Distribution / Partitioning – w/ hash function
– No replication: key k is stored at server h(k)
– 3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work? •28

Example

• How would you represent the Flights data as key,
value pairs?

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work? •29

Example

• How would you represent the Flights data as key,
value pairs?

• Option 1: key=fid, value=entire flight record

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work? •30

Example

• How would you represent the Flights data as key,
value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work? •31

Example

• How would you represent the Flights data as key,

value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)

Carriers(cid, name)

How does query processing work? •32

Data Models

Taxonomy based on data models:
• Key-value stores

– e.g., Project Voldemort, Memcached
• Document stores

– e.g., SimpleDB, CouchDB, MongoDB

CSE 414 - Autumn 2018 33

☞

Motivation

• In Key, Value stores, the Value is often a very
complex object
– Key = ‘2010/7/1’, Value = [all flights that date]

• Better: allow DBMS to understand the value
– Represent value as a JSON (or XML...) document
– [all flights on that date] = a JSON file
– May search for all flights on a given date

34CSE 414 - Autumn 2018

Document Stores Features

• Data model: (key,document) pairs
– Key = string/integer, unique for the entire data
– Document = JSon, or XML

• Operations
– Get/put document by key
– Query language over JSon

• Distribution / Partitioning
– Entire documents, as for key/value pairs

We will discuss JSon •35

Example: storing FB friends

CSE 414 - Autumn 2018 36

Peter

Mary
John

Phil

As a graph

OR

Person1 Person2 is_friend

Peter John 1

John Mary 0

Mary Phil 1

Phil Peter 1

… … …

As a relation

We will learn the tradeoffs of different

data models later this quarter

Add new attributes?
Storing lists?

JSON

•37CSE 414 - Autumn 2018

JSON - Overview

• JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C,
C++, Java, Python, Perl, etc.

• The filename extension is .json.

CSE 414 - Autumn 2018 38We will emphasize JSon as semi-structured data

39

JSon Syntax
{ "book": [

{"id":"01",
"language": "Java”,
"author": ”H. Javeson”,
“year”: 2015

},
{"id":"07",

"language": "C++",
"edition": "second"
"author": ”E. Sepp”,
“price”: 22.25

}
]

}

CSE 414 - Autumn 2018

JSon vs Relational

• Relational data model

– Rigid flat structure (tables)

– Schema must be fixed in advanced

– Binary representation: good for performance, bad for exchange

– Query language based on Relational Calculus

• Semistructured data model / JSon

– Flexible, nested structure (trees)

– Does not require predefined schema ("self describing”)

– Text representation: good for exchange, bad for performance

– Most common use: Language API; query languages emerging

CSE 414 - Autumn 2018 40

JSon Terminology

• Data is represented in name/value pairs.
• Curly braces hold objects

– Each object is a list of name/value pairs separated
by , (comma)

– Each pair is a name is followed by ':'(colon)
followed by the value

• Square brackets hold arrays and values are
separated by ,(comma).

CSE 414 - Autumn 2018 41

JSon Data Structures

• Collections of name-value pairs:
– {“name1”: value1, “name2”: value2, …}
– The “name” is also called a “key”

• Ordered lists of values:
– [obj1, obj2, obj3, ...]

CSE 414 - Autumn 2018 42

Avoid Using Duplicate Keys

CSE 414 - Autumn 2018 43

{"id":"07",
"title": "Databases",
"author": "Garcia-Molina",
"author": "Ullman",
"author": "Widom"

}

{"id":"07",
"title": "Databases",
"author": ["Garcia-Molina",

"Ullman",
"Widom"]

}

The standard allows them, but many implementations don’t

JSon Datatypes

• Number

• String = double-quoted

• Boolean = true or false

• nullempty

CSE 414 - Autumn 2018 44

45

JSon Semantics: a Tree !

person

Mary

name
address

name
address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:

[{“name”: “Mary”,

“address”:

{“street”:“Maple”,

“no”:345,

“city”: “Seattle”}},

{“name”: “John”,

“address”: “Thailand”,

“phone”:2345678}}

]

}

CSE 414 - Autumn 2018

46

JSon Data

• JSon is self-describing

• Schema elements become part of the data

– Relational schema: person(name,phone)

– In Json “person”, “name”, “phone” are part of the

data, and are repeated many times

• Consequence: JSon is much more flexible

• JSon = semistructured data

CSE 414 - Autumn 2018

Mapping Relational Data to JSon

CSE 414 - Autumn 2018 47

name name namephone phone phone

“John” 3634 “Sue” “Dirk”6343 6363

Person

person

name phone

John 3634

Sue 6343

Dirk 6363

{“person”:

[{“name”: “John”, “phone”:3634},

{“name”: “Sue”, ”phone”:6343},

{“name”: “Dirk”, ”phone”:6383}

]

}

Mapping Relational Data to JSon

48

Person
name phone

John 3634

Sue 6343

May inline foreign keys

Orders

personName date product

John 2002 Gizmo

John 2004 Gadget

Sue 2002 Gadget

{“Person”:
[{“name”: “John”,
“phone”:3646,
“Orders”:[{“date”:2002,

“product”:”Gizmo”},
{“date”:2004,
“product”:”Gadget”}

]
},
{“name”: “Sue”,
“phone”:6343,
“Orders”:[{“date”:2002,

“product”:”Gadget”}
]

}
]

}

