Introduction to Data Management
CSE 414

Unit 4: RDBMS Internals
Logical and Physical Plans
Query Execution
Query Optimization

(3 lectures)

CSE 414 - Autumn 2018 1

Introduction to Database Systems
CSE 414

Lecture 16:
Basics of Data Storage and Indexes

CSE 414 - Autumn 2018 2

Query Performance

» My database application is too slow... why?
* One of the queries is very slow... why?

» To understand performance, we need to
understand:
— How is data organized on disk
— How to estimate query costs

— In this course we will focus on disk-based DBMSs

CSE 414 - Autumn 2018 3

Student

ID |fName | IName

=

0 | Tom Hanks

Data Storage

20 | Amy Hanks

» DBMSs store data in files
» Most common organization is row-wise storage

* On disk, afile is split into ;2 :"m :i block 1
my anks

blocks =

. - block 2
« Each block contains 200 |-

a set of tuples = block 3

420

800

In the example, we have 4 blocks with 2 tuples each

CSE 414 - Autumn 2018 4

Student

ID | fName | IName

Data File Types

=

0 | Tom Hanks

20 | Amy Hanks

The data file can be one of:

* Heap file
— Unsorted
» Sequential file
— Sorted according to some attribute(s) called key

CSE 414 - Autumn 2018 5

Index

» An additional file, that allows fast access to
records in the data file given a search key

CSE 414 - Autumn 2018 6

Index

« An additional file, that allows fast access to
records in the data file given a search key

» The index contains (key, value) pairs:

— The key = an attribute value (e.g., student ID or name)
— The value = a pointer to the record

CSE 414 - Autumn 2018 7

Index

» An additional file, that allows fast access to
records in the data file given a search key

» The index contains (key, value) pairs:

— The key = an attribute value (e.g., student ID or name)
— The value = a pointer to the record
» Could have many indexes for one table

[Key = means here search key]

CSE 414 - Autumn 2018 8

This Is Not A Key

Different keys:

» Primary key — uniquely identifies a tuple

» Key of the sequential file — how the data file is
sorted, if at all

 Index key — how the index is organized

| Ve

Zhis 4n not a pupe.

CSE 414 - Autumn 2018

Student

EXampIe 1: ID [fName | IName

10 | Tom Hanks

|ndeX On ID 20 | Amy Hanks

Index Student_ID on Student.ID Data File Student| ..
A~

Student

Example 2 ID | fName | IName
’ 10 | Tom Hanks
Index on fName [z[aw [rans
Index Student_fName
on Student.fName Data File Student] ...
—_ A=
pe 10 | Tom Hanks
|« # 20 |Amy Hanks
::: P[50 |.. .
~ 200 | ...
220
240
420
y, 800
on | 4
CSE 414 - Autumn 2018 11

~—

10 Tom Hanks
0 >
2 - | 20 | Amy Hanks
2 —p [50 | ...
200 -N
20 200 | ...
240 220
420 240

420

800

CSE 414 - Autumn 2018 10
Index Organization
» Hash table

* B+ trees — most common

— They are search trees, but they are not binary
instead have higher fan-out

— Will discuss them briefly next

» Specialized indexes: bit maps, R-trees,
inverted index

CSE 414 - Autumn 2018 12

Student

D fName IName
Hash table example [w[7om [renis
20 | Amy Hanks
Index Student_ID on Student.ID Data File Student ...
~A—
10 | Tom Hanks
10 >
P - | 20 | Amy Hanks
50 —pp [50
200 4
200
220
240 220
420 240
00
420
800
Index File Data file
(preferably (on disk)
in memory)
CSE 414 - Autumn 2018 13

B+ Tree Index by Example

Find the key 40
80
40<=80
‘ 20 | 60 100 | 120 | 140
20\40.<= 60 \
10 15‘18‘ 20‘30‘40‘50' 60‘65‘ ‘ 80‘85‘90‘
NENENIEEE [[[BLL, L [[
30 40 <Ko \
B HE EEEE
CSE 414 - Autumn 2018 14

Clustered vs Unclustered

Index entries
(Index File)

Data Records Data Records

CLUSTERED UNCLUSTERED

[Every table can have only one clustered and many unclustered indexes]
Why?

CSE 414 - Autumn 2018 15

Index Classification

¢ Clustered/unclustered

— Clustered = records close in index are close in data

+ Option 1: Data inside data file is sorted on disk

+ Option 2: Store data directly inside the index (no separate files)
— Unclustered = records close in index may be far in data

CSE 414 - Autumn 2018 16

Index Classification

¢ Clustered/unclustered

— Clustered = records close in index are close in data

« Option 1: Data inside data file is sorted on disk

« Option 2: Store data directly inside the index (no separate files)
— Unclustered = records close in index may be far in data

* Primary/secondary
— Meaning 1:
« Primary = is over attributes that include the primary key
« Secondary = otherwise
— Meaning 2: means the same as clustered/unclustered

CSE 414 - Autumn 2018 17

Index Classification

¢ Clustered/unclustered

— Clustered = records close in index are close in data

+ Option 1: Data inside data file is sorted on disk

+ Option 2: Store data directly inside the index (no separate files)
— Unclustered = records close in index may be far in data

* Primary/secondary
— Meaning 1:
« Primary = is over attributes that include the primary key
« Secondary = otherwise
— Meaning 2: means the same as clustered/unclustered

» Organization B+ tree or Hash table

CSE 414 - Autumn 2018 18

Scanning a Data File

* Disks are mechanical devices!
— Technology from the 60s;
— Density increases over time
» Read only at the rotation speed!
» Consequence: sequential scan faster than random
— Good: read blocks 1,2,3,4,5,...
— Bad: read blocks 2342, 11, 321,9, ...
* Rule of thumb:
— Random read 1-2% of file = sequential scan entire file;

— 1-2% decreases over time, because of increased density

Solid state (SSD): gtill,toq expensive today

Summary So Far

 Index = a file that enables direct access to
records in another data file
— B+ tree / Hash table
— Clustered/unclustered
« Data resides on disk
— Organized in blocks
— Sequential reads are efficint
— Random access less efficient
— Random read 1-2% of data worse than sequential

CSE 414 - Autumn 2018 20

Takes(studentID, courselD)

/\
o Student

Takes

Student(lD, fname, Iname) SELECT *

FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Example

CSE 414 - Autumn 2018 21

Student(lD, fname, Iname)
Takes(studentID, courselD)

/\
o Student

Takes

fory in Takes
if courselD > 300 then
for x in Student
if x.ID=y.studentID
output *

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Example

CSE 414 - Autumn 2018 22

Student(|D, fname, Iname)
Takes(studentID, courselD)

/\
o Student

Takes

fory in Takes
if courselD > 300 then
for x in Student
if x.ID=y.studentID
output *

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Example

Assume the database has indexes on these attributes:
« Takes_courselD = index on Takes.courselD
« Student_ID = index on Student.ID

CSE 414 - Autumn 2018 23

Student(lD, fname, Iname)
Takes(studentID, courselD)

/\
o Student

Takes

fory in Takes
if courselD > 300 then
for x in Student
if x.ID=y.studentID
output *

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Example

Assume the database has indexes on these attributes:
« Takes_courselD = index on Takes.courselD
« Student_ID = index on Student.ID

for y’ in Takes_courselD where y’.courselD > 300

CSE 414 - Autumn 2018 24

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Student(lR, fname, Iname)
Takes(studentID, courselD)

/"\ Example

o Student

Takes

fory in Takes

if courselD >300then | Assume the database has indexes on these attributes:

for x in Student
if x.ID=y.studentID
output *

« Takes_courselD = index on Takes.courselD
« Student_ID = index on Student.ID

Index selection

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’

CSE 414 - Autumn 2018 25

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Student(lD, fname, Iname)
Takes(studentID, courselD)

7"\ Example

s Student

Takes

fory in Takes
if courselD >300then | Assume the database has indexes on these attributes:
forxin Student + Takes_courselD = index on Takes.courselD
if x.ID=y.studentiD § | Student_ID = index on Student.ID

output *

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’

for x’ in Student_ID where x".ID = y.studentID

x = fetch the Student record pointed to by x’

CSE 414 - Autumn 2018 26

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Student(|D, fname, Iname)
Takes(studentID, courselD)

/"\ Example

o Student

Takes

fory in Takes

if courselD >300then | Assume the database has indexes on these attributes:

for x in Student
if x.ID=y.studentID
output *

« Takes_courselD = index on Takes.courselD
« Student_ID = index on Student.ID

Index selection

fory’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’
for x” in Student_ID where x.ID = y.studentID
x = fetch the Student record pointed to by x’
output *

CSE 414 - Autumn 2018 27

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Student(lD, fname, Iname)
Takes(studentID, courselD)

/== Example

o Student
1
Takes

fory in Takes
if courselD >300then | Assume the database has indexes on these attributes:
forxin Student + Takes_courselD = index on Takes.courselD
if x.ID=y.studentiD § | Student_ID = index on Student.ID

output *

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’
for x” in Student_ID where x".ID = y.studentID
x = fetch the Student record pointed to by x’
output *

CSE 414 - Autumn 2018 28

Getting Practical:
Creating Indexes in SQL

| CREATE TABLE V(Mint, Nvarchar(20), Pint); |

| CREATE INDEX V1 ON V(N) |

[cReATE INDEX V2 ON V(P M) |

[CREATE INDEX V3 ON V(M, N) |

[CREATE UNIQUE INDEX V4 ON V(N) |

I CREATE CLUSTERED INDEX V5 ON V(N) I

CSE 414 - Autumn 2018 29

Getting Practical:
Creating Indexes in SQL

| CREATE TABLE V(Mint, Nvarchar(20), Pint); |

| CREATE INDEX V1 ON V(N) |

| CREATE INDEX V2 ON V(P, M)

[CREATE INDEX V3 ON V(M, N) |

[CREATE UNIQUE INDEX 4 ON V(N) |

I CREATE CLUSTERED INDEX V5 ON V(N) I

CSE 414 - Autumn 2018 30

Getting Practical:
Creating Indexes in SQL

[CREATE TABLE V(Mint, Nvarchar(20), Pint); |

yes

| CREATE INDEX V1 ON V(N) |

where P=55 and M=77

| CREATE INDEX V2 ON V(P, M)

[CREATE INDEX V3 ON V(M, N) |

| CREATE UNIQUE INDEX V4 ON V(N) |

I CREATE CLUSTERED INDEX V5 ON V(N) I

CSE 414 - Autumn 2018 31

Getting Practical:
Creating Indexes in SQL

[CREATE TABLE V(Mint, Nvarchar(20), Pint); |

| CREATE INDEX V1 ON V(N) |

| CREATE INDEX V2 ON V(P, M)

where P=55 and M=77

[CREATE INDEX V3 ON V(M, N) | select *

from V.
where P=55

| CREATE UNIQUE INDEX V4 ON V(N) |

I CREATE CLUSTERED INDEX V5 ON V(N) I

CSE 414 - Autumn 2018

yes

Getting Practical:
Creating Indexes in SQL

| CREATE TABLE V(Mint, Nvarchar(20), Pint); |

yes

select *
from V

| CREATE INDEX V1 ON V(N) |

where P=55 and M=77

| CREATE INDEX V2 ON V(P, M)

Getting Practical:
Creating Indexes in SQL

| CREATE TABLE V(Mint, Nvarchar(20), Pint); |

yes

select *
from V

| CREATE INDEX V1 ON V(N) |

| CREATE INDEX V2 ON V(P, M)

where P=55 and M=77

[CREATE INDEX V3 ON V(M, N) | select yes
where P=55
[CREATE UNIQUE INDEX V4 ON V(N) |
[CREATE CLUSTERED INDEX V5 ON V(N) |
CSE 414 - Autumn 2018 33
Getting Practical:
Creating Indexes in SQL
| CREATE TABLE V(Mint, Nvarchar(20), Pint); | yes

| CREATE INDEX V1 ON V(N) |

where P=55 and M=77
| CREATE INDEX V2 ON V(P, M) : &

lect *
[CREATE INDEX V3 ON V(M, N) | select ves
where P=55
| CREATE UNIQUE INDEX V4 ON V(N) | —
from Vv no
[CREATE CLUSTERED INDEX V5 ONV(N) | [wnere =77
CSE 414 - Autumn 2018 35

[CREATE INDEX V3 ON V(M, N) | select” yes
where P=55
[CREATE UNIQUE INDEX 4 ON V(N) | —
fi \
[CREATE CLUSTERED INDEXV5 ONV(N) | [wherewer7
CSE 414 - Autumn 2018 34
Getting Practical:
Creating Indexes in SQL
| CREATE TABLE V(Mint, Nvarchar(20), Pint); | yes

| CREATE INDEX V1 ON V(N) |

| CREATE INDEX V2 ON V(P, M)

where P=55 and M=77

[CREATE INDEX V3 ON V(M, N) | seleat*
where P=55

 CREATE UNIQUE INDEX V4 ON V(N) | —
from vV

[CREATE CLUSTERED INDEX V5 ON V(N) where M=77

Not supported
CSE 414 - Autumn in sQLite

yes

no

Student

ID | fName | IName

Which Indexes?

=

0 | Tom Hanks

20 | Amy Hanks

* How many indexes could we create?

* Which indexes should we create?

CSE 414 - Autumn 2018 37

Student

ID |fName | IName

Which Indexes?

=

0 | Tom Hanks

20 | Amy Hanks

* How many indexes could we create?

« Which indexes should we create?

[In general this is a very hard problem]

CSE 414 - Autumn 2018 38

Student

ID | fName | IName

Which Indexes?

=

0 | Tom Hanks

20 | Amy Hanks

» The index selection problem

— Given a table, and a “workload” (big Java
application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

* Who does index selection:
— The database administrator DBA

— Semi-automatically, using a database
administration tool

CSE 414 - Autumn 2018 39

Student

ID |fName | IName

Which Indexes?

=

0 | Tom Hanks

20 | Amy Hanks

» The index selection problem

— Given a table, and a “workload” (big Java
application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

* Who does index selection: pe
— The database administrator DBA

-
— Semi-automatically, using a database
administration tool

CSE 414 - Autumn 2018 40

Index Selection: Which Search Key

» Make some attribute K a search key if the
WHERE clause contains:

— An exact match on K
— Arange predicate on K
—AjoinonK

CSE 414 - Autumn 2018 41

The Index Selection Problem 1

V(M, N, P);
Your workload is this
100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

CSE 414 - Autumn 2018 42

The Index Selection Problem 1

V(M, N, P);
Your workload is this
100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

What indexes ?

CSE 414 - Autumn 2018 43

The Index Selection Problem 1

V(M, N, P);
Your workload is this
100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

[A: V(N) and V(P) (hash tables or B-trees)]

CSE 414 - Autumn 2018 44

The Index Selection Problem 2
V(M, N, P);

Your workload is this

The Index Selection Problem 2
V(M, N, P);

Your workload is this

100000 queries: 100 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (7,7, ?)
WHERE N>? and N<? | |WHERE P="?

100000 queries: 100 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?,?, ?)
WHERE N>? and N<? | | WHERE P=?

What indexes ?

CSE 414 - Autumn 2018 45

[A: definitely V(N) (must B-tree); unsure about V(P)]

CSE 414 - Autumn 2018 46

The Index Selection Problem 3

Your workload is this
100000 queries: 1000000 queries: 100000 queries:

SELECT* SELECT * INSERT INTO V
FROM V FROM V VALUES (?,?,?)

The Index Selection Problem 3

Your workload is this
100000 queries: 1000000 queries: 100000 queries:

WHERE N=? WHERE N=? and P>?

What indexes ?

CSE 414 - Autumn 2018 47

SELECT* SELECT * INSERT INTO V
FROMV FROM V VALUES (?,?,?)
WHERE N=? WHERE N=? and P>?

A: V(N, P) How does this index differ from:
1. Two indexes V(N) and V(P)?

cse414| 2. Anindex V(P, N)?

The Index Selection Problem 4
V(M, N, P);

Your workload is this

The Index Selection Problem 4

V(M, N, P);

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N>? and N<? WHERE P>? and P<?

1000 queries: 100000 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N>? and N<? WHERE P>? and P<?

What indexes ?

CSE 414 - Autumn 2018 49

[A: V(N) secondary, V(P) primary index]

CSE 414 - Autumn 2018 50

Two typical kinds of queries

 Point queries

SELECT) » What data structure

FROM Movie

WHERE year = ? §hould be used for

index?

SELECT * Range queries

FROM Movie « What data structure

WHERE year >=? AND should be used for
year <=7 index?

CSE 414 - Autumn 2018 51

Basic Index Selection Guidelines
» Consider queries in workload in order of importance

« Consider relations accessed by query
— No point indexing other relations

» Look at WHERE clause for possible search key

» Try to choose indexes that speed-up multiple queries

CSE 414 - Autumn 2018 52

To Cluster or Not

» Range queries benefit mostly from clustering

» Covering indexes do not need to be
clustered: they work equally well unclustered

CSE 414 - Autumn 2018 53

A SELECT *
FROM R
WHERE R.K>? and R.K<?

Cost

100
Percentage tuples retrieved

CSE 414 - Autumn 2018 54

A SELECT *
FROM R
WHERE R.K>? and R.K<?

Cost Sequential scan

det
wgﬂedw
)

0 100
Percentage tuples retrieved

CSE 414 - Autumn 2018

? SELECT *
FROM R
WHERE R.K>? and R.K«?
Cost Sequential scan
100
Percentage tuples retrieved
CSE 414 - Autumn 2018 55
A
g
? bS SELECT *
q:‘?z’ FROM R
K WHERE R.K>? and R.K<?
$
Cost Sequential scan
e
e
e

100
Percentage tuples retrieved

CSE 414 - Autumn 2018

Choosing Index is Not Enough

To estimate the cost of a query plan, we still
need to consider other factors:

— How each operator is implemented
— The cost of each operator

— Let'’s start with the basics

CSE 414 - Autumn 2018

Introduction to Database Systems
CSE 344

Lecture 17:
Basics of Query Optimization and
Query Cost Estimation

CSE 414 - Autumn 2018

Cost of Reading
Data From Disk

CSE 414 - Autumn 2018

10

Cost Parameters
e Cost =1/0 + CPU + Network BW

— We will focus on I/O in this class
Parameters (a.k.a. statistics):

— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a

CSE 414 - Autumn 2018

Cost Parameters

* Cost =1/0 + CPU + Network BW
— We will focus on /O in this class
» Parameters (a.k.a. statistics):

— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

* DBMS collects statistics about base tables
must infer them for intermediate results

CSE 414 - Autumn 2018

Cost of Reading Data From Disk

» Sequential scan for relation R costs B(R)

* Index-based selection

— Estimate selectivity factor f (see previous slide)
— Clustered index: f*B(R)
— Unclustered index f*T(R)

Note: we ignore I/O cost for index pages |

CSE 414 - Autumn 2018

Cost Parameters
« Cost =1/0 + CPU + Network BW

— We will focus on I/O in this class
» Parameters (a.k.a. statistics):

— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

CSE 414 - Autumn 2018

Selectivity Factors for Conditions

" A=c " oa=e(R) */
— Selectivity = 1V(RA)

-« A<c I* Oa<e(R)*/
— Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

e c1<A<c2 [* Oc1<a<c2(R)*/
— Selectivity = (c2 — ¢1)/(max(R,A) - min(R,A))

CSE 414 - Autumn 2018

Index Based Selection

B(R) = 2000
. Examp|e: T(R) = 100,000 cost of Ga:V(R) =7
V(R, a) = 20

« Table scan:
* Index based selection:

CSE 414 - Autumn 2018

11

Index Based Selection

B(R) = 2000
. Example: T(R) - 100’000 cost of Ua:v(R) =9
V(R, a) = 20

» Table scan: B(R) = 2,000 I/Os
* Index based selection:

CSE 414 - Autumn 2018 67

Index Based Selection

B(R) = 2000
Example: [T(R) = 100,000 cost of 6.v(R) =?
V(R, a) = 20

Table scan: B(R) = 2,000 I/Os
Index based selection:

— Ifindex is clustered:
— If index is unclustered:

CSE 414 - Autumn 2018 68

Index Based Selection

B(R) = 2000
* Example: [T(R) = 100,000
V(R, a) = 20
» Table scan: B(R) = 2,000 I/Os
* Index based selection:
— Ifindex is clustered: B(R) * 1/V(R,a) = 100 I/Os
— Ifindex is unclustered:

CSE 414 - Autumn 2018 69

Index Based Selection

B(R) = 2000
Example: T(R) = 100,000 cost of 6,-,(R) =?
V(R, a) = 20

Table scan: B(R) = 2,000 I/Os
Index based selection:

— Ifindex is clustered: B(R) * 1/V(R,a) = 100 I/Os
— If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 414 - Autumn 2018 70

Index Based Selection

B(R) = 2000
. Examp|e: T(R) — 100’000 cost of Ga:\,(R) =9
V(R, a) = 20

» Table scan: B(R) = 2,000 I/Os
* Index based selection:
— Ifindex is clustered: B(R) * 1/V(R,a) = 100 I/Os
— Ifindex is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

Lesson: Don't build unclustered indexes when V(R,a) is small !

CSE 414 - Autumn 2018 7

Cost of Executing Operators
(Focus on Joins)

CSE 414 - Autumn 2018 72

12

Outline

» Join operator algorithms
— One-pass algorithms (Sec. 15.2 and 15.3)
— Index-based algorithms (Sec 15.6)

» Note about readings:
— In class, we discuss only algorithms for joins
— Other operators are easier: read the book

CSE 414 - Autumn 2018 73

Join Algorithms
* Hash join
» Nested loop join

» Sort-merge join

CSE 414 - Autumn 2018 74

Hash Join

Hash join: R~ S

» Scan R, build buckets in main memory

» Then scan S and join

» Cost: B(R) + B(S)

» Which relation to build the hash table on?

CSE 414 - Autumn 2018 75

Hash Join

Hash join: R~ S

* Scan R, build buckets in main memory

» Then scan S and join

Cost: B(R) + B(S)

Which relation to build the hash table on?

* One-pass algorithm when B(R) <M
— M = number of memory pages available

CSE 414 - Autumn 2018 76

Hash Join Example

Patient(pid, name, address)
Insurance(pid, provider, policy _nb)
Patient »a Insurance

Two tuples
per page

Patient Insurance
2| ‘Blue’
4| ‘Prem’

SE 414 - Au nﬁ 1;GrpH,

HaSh JOln Example Some large-

Patients«a Insurance enough #
Memory M = 21 pages

Showing
pid only

This is one page

CSH 414 - Autumn 2018
With O tuples

13

Hash Join Example

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

Memory M = 21 pages

Hash h: pid % 5
|I:|-I:|--I

Disk 5
1

Input buffer

CS§ 414 - Autumn 2018 79

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

Memory M = 21 pages

Hash h: pid % 5
|I:I-I:I--|

Input buffer Output buffer

Write to disk or
pass to next
operator

CSH 414 - Autumn 2018

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

Memory M = 21 pages

Hash h: pid % 5
|I:|-I:|--I

Input buffer Output buffer

CSE 414 - Autumn 2018 81

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

Memory M = 21 pages

Hash h: pid % 5
|I:I-I:I--|

43

Input buffer Output buffer

Keep going until read all of Insurance

Cs 414(—;\cu)l§r¥\:n %(B) + B(S) 82

Nested Loop Joins

* Tuple-based nested loop R < S
* Ris the outer relation, S is the inner relation

for each tuple t; in Rdo.
for each tuple t; in S do.
if t; and 2 join then output (t1,t2)

What is the Cost?

CSE 414 - Autumn 2018 83

Nested Loop Joins

* Tuple-based nested loop R x S
* R is the outer relation, S is the inner relation

for each tuple t; in Rdo.
for each tuple t; in S do.
if t1 and t. join then output (t1,t2)

- Cost: B(R) + T(R) B(S)

» Multiple-pass since S is read many times

CSE 414 - Autumn 2018 84

14

Page-at-a-time Refinement

for each page of tuples rin Rdo_
for each page of tuples s in S do_

for all pairs of tuples ty inr, t; in s
if t1 and t; join then output (t1,t2)

What is the Cost?

- Cost: B(R) + B(R)B(S)

CSE 414 - Autumn 2018 85

Page-at-a-time Refinement

- Input buffer for Patient
Input buffer for Insurance

Output buffer

CSH 414 - Autumn 2018 86

Page-at-a-time Refinement

- Input buffer for Patient

Input buffer for Insurance

]

Output buffer

CSE 414 - Autumn 2018 87

Page-at-a-time Refinement

- Input buffer for Patient

E Input buffer for Insurance

Keep going until read

all of Insurance
Then repeat for next Output buffer

page of Patient... until end of Patient

Ccsj 414(—:Acu)l§r¥\:n %(B) + B(R)B(S) 88

Block-Nested-Loop Refinement

for each group of M-1 pages rin Rdo_
for each page of tuples s in Sdo_
for all pairs of tuples tyinr, tins
if t1 and t, join then output (t1,t2)

What is the Cost?

« Cost: B(R) + B(R)B(S)/(M-1)

CSE 414 - Autumn 2018 89

Sort-Merge Join

Sort-merge join: R~ S

» Scan R and sort in main memory
» Scan S and sort in main memory
* MergeRand S

» Cost: B(R) + B(S)
» One pass algorithm when B(S) + B(R) <=M
» Typically, this is NOT a one pass algorithm

CSE 414 - Autumn 2018 90

15

Sort-Merge Join Example

Step 1: Scan Patient and sort in memory
Memory M = 21 pages

CS§ 414 - Autumn 2018 91

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

HRBABRBE
[(112]2]3]f3]4]l4]6]

CSH 414 - Autumn 2018 92

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

[121[sT4][5Te][8To]
[112]12]3]{3]4]4]6]

Output buffer

CSE 414 - Autumn 2018 93

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

HRBABRBE
[(1l2]2]3][3]4]l4]6]

Output buffer

Keep going until end of first relation

CSH 414 - Autumn 2018 94

Index Nested Loop Join
RxS
» Assume S has an index on the join attribute

« lterate over R, for each tuple fetch
corresponding tuple(s) from S

* Cost:
— If index on S is clustered:
B(R) + T(R) * (B(S) * 1/V(S,a))
— If index on S is unclustered:
B(R) + T(R) * (T(S) * 1/V(S,a))

CSE 414 - Autumn 2018 95

Cost of Query Plans

CSE 414 - Autumn 2018 96

16

Supplier(gid, sname, scity, sstate)

Supply(sid, pno, quantity)

Logical Query Plan 1

TTsname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’

Opno=2 Ascity="Seattle’ A sstate="WA'
and x.sstate = ‘WA’

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

Tlsname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’

GOpno=2 Ascity="Seattle’ A sstate="WA'
and x.sstate = ‘WA’

T=10000
Supply Supplier
T(Supplier) = 1000
g((gupp:)’)) = 1?)300 B(Supplier) = 100 M=11
upply) = v, i ty) = 20 =
V(Supply, pno) = 2500 cse 414 (ARSI 20 =

Supply Supplier
T(Supplier) = 1000
'Br((guppzyg = 12300 B(Supplier) = 100 M=11
upply) = ViSHRRliEsoIE) = 20 =
V(Supply, pno) = 2500 cs 414 {EHBRNGEOEN) 270 a7

Supplier(gid, sname, scity, sstate)

Supply(sid, pno, quantity)
Logical Query Plan 1
Trsname
SELECT sname
T <1 FROM Supplier x, Supply y

WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’

Opno=2 Ascity="Seattle’ A sstate="WA’
and x.sstate = ‘WA’

T =10000 l

&=

Supply Supplier
T(Supplier) = 1000
'Br(éUDP'Iyg = :ggoo B(Supplier) = 100 M=11
upply) = ViSupaliesgsgty) = 20 =
V(Supply, pno) = 2500 csE 414 ARRRIIOIEY) Z 20 99

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

Logical Query Plan 2

Tlsname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T=4

Oscity="Seattle’ A sstate="WA'

Opno=2
Supply Supplier
T(Supplier) = 1000
;((:”pp'lyg = :ggoo B(Supplier) = 100 M=11
upply) = VASypRlieso3aty) = 20 =
V(Supply, pno) = 2500 csE 414 ARRRIIOIEY) Z 20 101

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

Tlsname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Oscity="Seattle’ A sstate="WA'

Opno=2
Supply Supplier
T(Supplier) = 1000
g((gUPD:Y)) = 12800 B(Supplier) = 100 M=11
upply) = ViSupalies saity) = 20 =
V(Supply, pno) = 2500 cse a1a JAEHARNSOIEY) <%0 100

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

Tlsname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

_ sid = sia =3
s Very wrong!
Why?

Oscity="Seattle’ A sstate="WA'

Opno=2
Supply Supplier
T(Supplier) = 1000
g((gUPD:Y)) = 12800 B(Supplier) = 100 M=11
upply) = ViSupalies saity) = 20 =
V(Supply, pno) = 2500 cse a1a AEHARNSOIEY) <%0 102

17

Supplier(gid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

TTsname

SELECT sname
T=4 FROM Supplier x, Supply y

WHERE x.sid = y.sid
sid=sig
T=4

and y.pno = 2
and x.scity = ‘Seattle’
Opno=2 Oscity="Seattle’ A sstate="WA'

and x.sstate = ‘WA’
Supply Supplier

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 CSE 414 —\‘%gﬂi’rﬁ}laéuﬁ%"y) =20 M=11

Very wrong!
Why?

V(Supply, pno) = 2500 Uppliet, state) = 10 103
Supplier(gid, sname, scity, sstate)
Supply(sid, pno, quantity)
Trsname
T<1
Gpno=2 Ascity="Seattle’ A sstate="WA'
T=10000 l
ITotaI cost: I
Sil i
Block nested loop joit
Scan S I .
upply Scan - Supplier
T(Supplier) = 1000
'Br(éUDP'Iyg = :ggoo B(Supplier) = 100 M=11
upply) = v, e sgity) = 20 =
V(Supply, pno) = 2500 csE 414 ARRRIIOIEY) Z 20 105

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

sid = sia —
T=4 T=5
Very wrong!
Why?

Opno=2 Oscity="Seattle’ A sstate="WA'

Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Synplies scity) = 20 M=11
V(Supply, pno) = 2500 cse 414 (ARSI 20 04

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 1

Tlsname
T <1

Opno=2 Ascity="Seattle’ A sstate="WA'

T =10000 l

| Total cost: 100+100*100/10 = 1100 |

sid

Block nested loop joit

Scan

Supply sean Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V{Sunplies.scity) = 20 M=11
V(Supply, pno) = 2500 cse a1a JAEHARNSOIEY) <%0 106

index lookup I

Supply(pno)
upply

T(Supply) = 10000

V(Supply, pno) = 2500

Trsname

Cost of Supply(pno) =
T=4 Cost of Supplier(scity) =

Total cost:

Dq T=5

— e
T=4 sid = \
Main memory join Osstate="WA
|
Unclustered Opno=2 T=50

ST = 10 CSE 414 %ﬁmﬂ"{ﬁ@‘y) =4 M=11

Gscity="Seattle’ Unclustered
index lookup
Supplier Supplier(scity)
T(Supplier) = 1000

B(Supplier) = 100 .

107

upplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

Tlsname

Cost of Supply(pno) = 4
Cost of Supplier(scity) =
Total cost:

Main memory join Osstate="WA

! 1250
Oscity="Seattle’

Unclustered Opno=2
index lookup I

Unclustered
Supply(pno)

index lookup
upply Supplier ~ Supplier(saity)
T(Supplier) = 1000
T(Supply) = 10000 A= =
B(Supply) = 100 Vv, i ty) = 20 =
V(Supply, pno) = 2500 cse a1a AEHARNSOIEY) <%0 108

18

Supplier(gid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

TTsname

Cost of Supply(pno) =4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

Osstate="WA
Unclustered Opno=2 ' =50
index lookup I Oscity='Seattle’ Unclustered
Supply(pno) index lookup
upply Supplier Supplier(scity)

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 v, ies scity) = 20 M=11
V(Supply, pno) = 2500 cs 414 {EHBRNGEOEN) 270 i

Supplier(gid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

Tlsname

T=4 l

Oscity="Seattle’ A sstate="WA'

sid = sig
T=4
Clustered

Index join

Cost of Supply(pno) =4
Cost of Index join =
Total cost:

Unclustered Opno=2
index lookup I
Supply(pno)

upply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 Y iesoscity) = 20 M=11
V(Supply, pno) = 2500 csE 414 ARRRIIOIEY) Z 20 n

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

Trsname
T=4 |
Oscity="Seattle’ A sstate="WA' Cost of Supply(pno) =
Cost of Index join =
Total cost:

sid = sia
T=4
Clustered

Index join
Unclustered Opno=2
index lookup I
Supply(pno)
upply Supplier
T(Supplier) = 1000

T(Supply) = 10000 B(Supplier) = 100 M=11

B(Supply) = 100 V) i ty) = 20 =

V(Supply, pno) = 2500 cse 414 (ARSI 20 o

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

Tlsname

T=4 |

Oscity="Seattle’ A sstate="WA Cost of Supply(pno) = 4

Cost of Index join = 4

Total cost: 8
sid = sia
T=4
Clustered
Index join
Unclustered Opno=2
index lookup I
Supply(pno)
upply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100 =
B(Supply) = 100 M=11

csE 414 JABHRRISS0REY) = 20 M2

V(Supply, pno) = 2500 upplier, state) = 10

Query Optimizer Summary

Input: A logical query plan

» Output: A good physical query plan

 Basic query optimization algorithm

— Enumerate alternative plans (logical and physical)

— Compute estimated cost of each plan
— Choose plan with lowest cost

This is called cost-based optimization

CSE 414 - Autumn 2018 13

19

