Introduction to Data Management CSE 414

Unit 6: Conceptual Design E/R Diagrams Integrity Constraints BCNF

(3 lectures)

2

Introduction to Data Management CSE 414

Integrity Constraints

CSE 414 - Autumn 2018

Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

- · ICs help prevent entry of incorrect information
- · How? DBMS enforces integrity constraints
 - Allows only legal database instances (i.e., those that satisfy all constraints) to exist
 - Ensures that all necessary checks are always performed and avoids duplicating the verification logic in each application

CSE 414 - Autumn 2018

Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples' ages are between 0 and 150.

CSE 414 – Autumn 2018

Keys in E/R Diagrams Underline: No formal way to specify multiple keys in E/R diagrams Person Address name SSN 47

Foreign Key Constraints

· Example with multi-attribute primary key

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)
REFERENCES Product(name, category)

• (name, category) must be a KEY in Product

CSE 414 – Autumn 2018

56

What happens when data changes?

Types of updates:

- · In Purchase: insert/update
- · In Product: delete/update

Product			Purchase
Name	Category	ProdName	Store
Gizmo	gadget	Gizmo	Wiz
Camera	Photo	Camera	Ritz
OneClick	Photo	Camera	Wiz

CSE 414 - Autumn 2018

What happens when data changes?

- SQL has three policies for maintaining referential integrity:
- NO ACTION reject violating modifications (default)
- <u>CASCADE</u> after delete/update do delete/update
- SET NULL set foreign-key field to NULL
- SET DEFAULT set foreign-key field to default value
 - need to be declared with column, e.g.,
 CREATE TABLE Product (pid INT DEFAULT 42)

CSE 414 - Autumn 2018

58

Maintaining Referential Integrity

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)
REFERENCES Product(name, category)
ON UPDATE CASCADE
ON DELETE SET NULL)

Product Name Category Gizmo gadget Camera Photo OneClick Photo

ProdName Category
Gizmo Gizmo
Snap Camera
EasyShoot Camera

Constraints on Attributes and Tuples

· Constraints on attributes:

NOT NULL

- -- obvious meaning...
 -- any condition!
- CHECK condition
 Constraints on tuples
 CHECK condition

CSE 414 – Autumn 2018

Autumn 2018 6

Constraints on Attributes and Tuples

CREATE TABLE R (
A int NOT NULL,
B int CHECK (B > 50 and B < 100),
C varchar(20),
D int,
CHECK (C >= 'd' or D > 0))

CSE 414 - Autumn 2018

Constraints on Attributes and Tuples

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT CHECK (price > 0),
PRIMARY KEY (productID),
UNIQUE (name, category))

CSE 414 - Autumn 2018

- Autumn 2018

Constraints on Attributes and Tuples What does this constraint do? What is the difference from Foreign-Key? CREATE TABLE Purchase (prodName IN (SELECT Product.name FROM Product), date DATETIME NOT NULL) CSE 414 – Autumn 2018 63

General Assertions

But most DBMSs do not implement assertions Because it is hard to support them efficiently Instead, they provide triggers

CSE 414 - Autumn 2018

64

62

Introduction to Data Management CSE 414

Design Theory and BCNF

CSE 414 – Autumn 2018

Relational Schema Design

Name	<u>SSN</u>	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
.loe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

CSE 414 - Autumn 2018

66

Relational Schema Design

Name	SSN	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?

CSE 414 - Autumn 2018

67

Break th	Relation int		ompositi	on
	Name	SSN	PhoneNumber	City
	Fred	123-45-6789	206-555-1234	Seattle
	Fred	123-45-6789	206-555-6543	Seattle
	Joe	987-65-4321	908-555-2121	Westfield
Name	SSN	City	SSN	PhoneNumber
Fred	123-45-6789	Seattle	123-45-6789	206-555-1234
Joe	987-65-4321	Westfield	123-45-6789	206-555-6543
Anomalies have gone:			987-65-4321	908-555-2121
No more repeated data Basy to move Fred to "Bellevue" (how?) Basy to delete all Joe's phone numbers (how?)				

Relational Schema Design (or Logical Design)

How do we do this systematically?

- · Start with some relational schema
- Find out its *functional dependencies* (FDs)
- Use FDs to *normalize* the relational schema

CSE 414 - Autumn 2018

Functional Dependencies (FDs) Definition If two tuples agree on the attributes $A_1, A_2, ..., A_n$ then they must also agree on the attributes $B_1, B_2, ..., B_m$ Formally: $A_1...A_n$ determines $B_1...B_m$ $A_1...A_n \rightarrow B_1, B_2, ..., B_m$ CSE 414 – Autumn 2018 70

Functional Dependencies (FDs) Definition $A_1, ..., A_m \rightarrow B_1, ..., B_n$ holds in R if: $\forall t, t' \in R,$ $(t.A_1 = t'.A_1 \land ... \land t.A_m = t'.A_m \rightarrow t.B_1 = t'.B_1 \land ... \land t.B_n = t'.B_n)$ R A1 ... Am B1 ... Bn t if t, t' agree here then t, t' agree here

Buzzwords • FD holds or does not hold on an instance • If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD • If we say that R satisfies an FD, we are stating a constraint on R

An Interesting Observation If all these FDs are true: name → color category → department color, category → price Then this FD also holds: name, category → price


```
Closure of a set of Attributes

Given a set of attributes A_1, ..., A_n

The closure is the set of attributes B, notated \{A_1, ..., A_n\}^+, s.t. A_1, ..., A_n \rightarrow B

Example:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:
name+ = {name, color}
color+ = {color}
```

```
Closure Algorithm

X={A1, ..., An}.

Repeat until X doesn't change do:
    if B_1, ..., B_n \rightarrow C is a FD and
    B_1, ..., B_n are all in X
    then add C to X.

{name, category}+=
    { name, category,}
}

CSE 414 - Autumn 2018 83
```

```
Closure Algorithm

X={A1, ..., An}.

Repeat until X doesn't change do:
    if B_1, ..., B_n \to C is a FD and
    B_1, ..., B_n are all in X
    then add C to X.

{name, category}* =
    { name, category, color, }
}

CSE 414 - Autumn 2018 84
```

```
Closure Algorithm

X={A1, ..., An}.

Repeat until X doesn't change do:
    if B_1, ..., B_n \to C is a FD and
    B_1, ..., B_n are all in X
    then add C to X.

{name, category}* =
    { name, category, color, department }
}

CSE 414 – Autumn 2018 85
```

```
Closure Algorithm

X={A1, ..., An}.

Repeat until X doesn't change do:
    if B<sub>1</sub>, ..., B<sub>n</sub> \rightarrow C is a FD and
    B<sub>1</sub>, ..., B<sub>n</sub> are all in X
    then add C to X.

{name, category}<sup>+</sup> =
    { name, category, color, department, price }
```

```
Closure Algorithm

X={A1, ..., An}.

Repeat until X doesn't change do:
    if B_1, ..., B_n \to C is a FD and
    B_1, ..., B_n are all in X
    then add C to X.

{name, category}* =
    { name, category, color, department, price }

Hence: name, category \to color, department, price
```

```
Example
In class:
R(A,B,C,D,E,F)
A,B \rightarrow C
A,D \rightarrow E
B \rightarrow D
A,F \rightarrow B
Compute \{A,B\}^{+} \quad X = \{A,B, \qquad \}
Compute \{A,F\}^{+} \quad X = \{A,F, \qquad \}
CSE 414 - Autumn 2018
88
```

```
Example
In class:
R(A,B,C,D,E,F)
A,B \rightarrow C
A,D \rightarrow E
B \rightarrow D
A,F \rightarrow B
Compute \{A,B\}^{+} \quad X = \{A,B,C,D,E\}
Compute \{A,F\}^{+} \quad X = \{A,F, \qquad \}
CSE 414 - Autumn 2018
```

```
Example
In class:
R(A,B,C,D,E,F)
A,B \rightarrow C
A,D \rightarrow E
B \rightarrow D
A,F \rightarrow B
Compute \{A,B\}^{+} \quad X = \{A,B,C,D,E\}
Compute \{A,F\}^{+} \quad X = \{A,F,B,C,D,E\}
CSE 414 - Autumn 2018
90
```

```
Example
In class:
R(A,B,C,D,E,F)
A,B \to C
A,D \to E
B \to D
A,F \to B
Compute \{A,B\}^+ \quad X = \{A,B,C,D,E\}
Compute \{A,F\}^+ \quad X = \{A,F,B,C,D,E\}
CSE 414 - Autumn 2018
What is the key of R?
```

Practice at Home

Find all FD's implied by:

 $\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow B \end{array}$ $B \rightarrow D$

CSE 414 - Autumn 2018

92

Practice at Home

Find all FD's implied by:

 $\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow B \end{array}$ $B \rightarrow D$

Step 1: Compute X^+ , for every X: $A^+ = A, \quad B^+ = BD, \quad C^+ = C, \quad D^+ = D$ AB+ =ABCD, AC+=AC, AD+=ABCD, BC+=BCD, BD+=BD, CD+=CD

ABC+ = ABD+ = ACD+ = ABCD (no need to compute—why ?)

BCD⁺ = BCD, ABCD⁺ = ABCD

Step 2: Enumerate all FD's X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

 $AB \rightarrow CD, AD \rightarrow BC, ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B$ ⁹³

9