Introduction to Data Management
CSE 414

Unit 6: Conceptual Design
E/R Diagrams
Integrity Constraints

BCNF

(3 lectures)

Introduction to Data Management
CSE 414

Design Theory and BCNF

CSE 414 — Autumn 2018 72

Relational Schema Design

Name SSN PhoneNumber | City
Fred 123-45-6789 | 206-555-1234 | Seattle
Fred 123-45-6789 | 206-555-6543 | Seattle
Joe 987-65-4321 | 908-555-2121 | Westfield

One person may have multiple phones, but lives in only one city
Primary key is thus (SSN, PhoneNumber)
What is the problem with this schema?

CSE 414 — Autumn 2018 73

Relational Schema Design

Name SSN PhoneNumber | City
Fred 123-45-6789 | 206-555-1234 | Seattle
Fred 123-45-6789 | 206-555-6543 | Seattle
Joe 987-65-4321 | 908-555-2121 | Westfield
Anomalies:
* Redundancy = repeat data

» Update anomalies = what if Fred moves to “Bellevue”?
* Deletion anomalies = what if Joe deletes his phone number?

CSE 414 — Autumn 2018 74

Relation Decomposition

Break the relation into two:

Name SSN PhoneNumber | City

Fred 123-45-6789 206-555-1234 | Seattle

Fred 123-45-6789 206-555-6543 | Seattle

/ Joe 987-65-4321 908-555-2121 | Westfield

Name SSN City SSN. PhoneNumber
Fred 123-45-6789 | Seattle 123-45-6789 206-555-1234
Joe 987-65-4321 | Westfield 123-45-6789 206-555-6543

H . 987-65-4321 908-555-2121
Anomalies have gone:

* No more repeated data
+ Easy to move Fred to “Bellevue” (how ?)
+ Easy to delete all Joe’s phone numbers (how ?) 75

Relational Schema Design
(or Logical Design)

How do we do this systematically?
« Start with some relational schema

» Find out its functional dependencies (FDs)

* Use FDs to normalize the relational schema

CSE 414 — Autumn 2018 76

Functional Dependencies (FDs)
Definition

If two tuples agree on the attributes

then they must also agree on the attributes
Formally: At...An determi@

[A1,As, ..., A By, By, ..., B |

Functional Dependencies (FDs)

Definition Ay, ..., An=> B4, ..., Byholds in R if:
vt t €R,
(tA1=t AALALAR= AR D tB1=t BiA ... AtB,=t.B))

CSE 414 — Autumn 2018 77
Example
An FD holds, or does not hold on an instance:

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

EmpID - Name, Phone, Position
Position > Phone
but not Phone - Position

R Al . | An Bi| ... | Bn
t
t
~ ~ J ~ >
if t, t agree here then t, t' agree here 8
Example
EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 < |Salesrep
E1111 Smith 9876 < |Salesrep
E9999 Mary 1234 Lawyer

Position > Phone

CSE 414 — Autumn 2018 80

CSE 414 — Autumn 2018 79
Example

EmpID Name Phone Position

E0045 Smith 1234 > |Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 > |Lawyer

But not Phone - Position

CSE 414 — Autumn 2018 81

Example

name -> color
category > department
color, category > price

name | category | color | department | price

Gizmo | Gadget | Green Toys 49

Tweaker | Gadget | Green Toys 99

Do all the FDs hold on this instance? ‘

CSE 414 — Autumn 2018 82

Example

name -> color
category > department
color, category > price

name | category | color | department | price

Gizmo Gadget | Green Toys 49

Tweaker | Gadget | Green Toys 49

Gizmo | Stationary | Green | Office-supp.| 59

What about this one ? ‘ CSE 414 - Autumn 2018 83

Buzzwords
* FD holds or does not hold on an instance

« If we can be sure that every instance of R will
be one in which a given FD is true, then we
say that R satisfies the FD

« If we say that R satisfies an FD, we are
stating a constraint on R

CSE 414 — Autumn 2018 84

Why bother with FDs?

Name SSN PhoneNumber | City
Fred 123-45-6789 | 206-555-1234 | Seattle
Fred 123-45-6789 | 206-555-6543 | Seattle
Joe 987-65-4321 | 908-555-2121 | Westfield
Anomalies:
* Redundancy = repeat data

» Update anomalies = what if Fred moves to “Bellevue”?
* Deletion anomalies = what if Joe deletes his phone number?

CSE 414 — Autumn 2018 85

An Interesting Observation

name -> color
If all these FDs are true: |category - department
color, category > price

Then this FD also holds: |name, category = price I

CSE 414 — Autumn 2018 86

An Interesting Observation

name -> color
If all these FDs are true: |category > department
color, category > price

Then this FD also holds: |name, category - price I

CSE 414 — Autumn 2018 87

An Interesting Observation

name -> color
If all these FDs are true: |category - department
color, category > price

Then this FD also holds: |name, category - price I

If we find out from application domain that a relation satisfies some FDs,
it doesn’'t mean that we found all the FDs that it satisfies!
There could be more FDs implied by the ones we have.

CSE 414 — Autumn 2018 88

Closure of a set of Attributes

Given a set of attributes A1,

< An

Closure Algorithm

The closure is the set of attributes B, notated {A4, ..., An}*,
st A, ...,Ay 2B

Example: |1. name > color
2. category > department
3. color, category > price

Closures:

name* = {name, color}
color* = {color}

CSE 414 — Autumn 2018

Closure Algorithm

X={A1, ..., An}. Example:

Repeat until X doesn’t change do:

1. name - color
2. category > department
3. color, category > price

if B4 .. By>C isaFDand
B4, ..., By areallin X
then add C to X.

{name, category}* =
{ name, category, color,

CSE 414 — Autumn 2018

Closure Algorithm

X={A1, ..., An}. Example:
Repeat until X doesn’t change do:
if B4 ... By,>C isaFDand
B4, ..., By areallin X
then add C to X.

1. name -> color
2. category > department
3. color, category - price

{name, category}* =
{ name, category, color, department, price }

CSE 414 — Autumn 2018

X={A1, ..., An}.

if B4y ...,Bh>C isaF
B4, ..., B, areallin X
then add C to X.

Repeat until X doesn’'t change do:

Example:

D and 1. name - color
2. category > department
3. color, category > price

{name, category}* =
{ name, category,

CSE 414

—Autumn 2018

Closure Algorithm

X={A1, ..., An}.

B4, ..., B, areallin X
then add C to X.

Repeat until X doesn’'t change do:
if B4 .. By>C isaFDand

Example:

1. name -> color
2. category > department
3. color, category > price

{name, category}* =

CSE 414 - Aut

{ name, category, color, department }

itumn 2018

Closure Al

gorithm

X={A1, ..., An}.
Repeat until X doesn’t change do:

B4, ..., By areallin X
then add C to X.

if B4 .. B,>C isaFDand

Example:

1. name -> color
2. category > department
3. color, category > price

{name, category}* =

{ name, category, color, department, price }

Hence: ‘name, category > color, department, price I

CSE 414 — Autumn

2018 94

Example Example
In class: In class:
R(A,B,C,D.EF) AB>C R(AB,C,D,E,F) AB>C
A,D > E A,D > E
B > D B > D
A F>B A F>B
Compute {AB}* X={A, B, } Compute {AB}* X={A,B,C,D,E }
Compute {A, F}* X={A,F, } Compute {A, F}* X={A, F, }
CSE 414 — Autumn 2018 95 CSE 414 — Autumn 2018 96
Example Example
In class: In class:
R(A,B,C,D,E,F) AB>C R(A,B,C,D,E,F) AB>C
A,D > E A,D > E
B > D B > D
A, F>B A, F>B
Compute {AB}Y X={A,B,C,D,E } Compute {AB}* X={A,B,C,D,E }
Compute {A, F}* X={A,F,B,C,D,E } Compute {A, F}* X={A,F,B,C,D,E }
CSE 414 — Autumn 2018 o7 cseata—auumn201s | What is the key of R? ‘

Practice at Home

Practice at Home
Find all FD’s implied by:

Find all FD’s implied by:
AB > C AB > C
AD > B AD > B
B > D B > D

Step 1: Compute X*, for every X:
A*=A, B*=BD, C*=C, D*=D
AB*=ABCD, AC*=AC, AD*=ABCD,
BC*=BCD, BD*=BD, CD*=CD
ABC* = ABD* = ACD*= ABCD (no need to compute— why ?)
BCD*=BCD, ABCD*=ABCD

Step 2: Enumerate all FD's X 2> Y,st.YS X*and XNY =0 :
CSE 414 — Autumn 2018 99

AB > CD, AD->BC, ABC > D,ABD > C,ACD>B | '

Keys Computing (Super)Keys

» A superkey is a set of attributes A, ..., A, s.t. for « For all sets X, compute X*
any other attribute B, we have Ay, ..., A, > B

« If X* = [all attributes], then X is a superkey
« A key is a minimal superkey

— A superkey and for which no subset is a superkey « Try reducing to the minimal X's to get the key

CSE 414 — Autumn 2018 101 CSE 414 — Autumn 2018 102
Example Example
Product(name, price, category, color) Product(name, price, category, color)
name, category > price name, category > price
category - color category - color
What is the key ? What is the key ?
(name, category) + = { name, category, price, color }
Hence (name, category) is a key
CSE 414 — Autumn 2018 103 CSE 414 — Autumn 2018 104
Example Key or Keys ?
Product(name, price, category, color) Can we have more than one key ?
name, category > price Given R(A,B,C) define FD'’s s.t. there are two or more

distinct keys

category - color

What is the key ?

(name, category) + ={ name, category, price, color }

CSE 414 — Autumn 2018 105 CSE 414 — Autumn 2018 106

Key or Keys ?
Can we have more than one key ?

Given R(A,B,C) define FD'’s s.t. there are two or more
distinct keys

A->B AB->C A->BC
B->C or BC->A °" IB>AC
C>A

\what are the keys here ? \

CSE 414 — Autumn 2018 107

Eliminating Anomalies
Main idea:
« X> Ais OKif X is a (super)key

*« X > Ais not OK otherwise
— Need to decompose the table, but how?

Boyce-Codd Normal Form

CSE 414 — Autumn 2018 108

Boyce-Codd Normal Form

Dr. Raymond F. Boyce

CSE 414 — Autumn 2018 109

Edgar Frank “Ted” Codd

"A Relational Model of Data for
Large Shared Data Banks"

CSE 414 — Autumn 2018 110

Boyce-Codd Normal Form

If there are no | Definition. A relation R is in BCNF if:

bad” FDs: Whenever X-> B is a non-trivial dependency,

then X is a superkey.

Definition. A relation R is in BCNF if:
Equivalently:| v X, either X* = X (i.e., X is not in any FDs)
or X* = [all attributes] (computed using FDs)

CSE 414 — Autumn 2018 m

BCNF Decomposition Algorithm

Normalize(R)
find X s.t.: X # X* and X* # [all attributes]
if (not found) then “Ris in BCNF”
letY =X*-X; Z = [all attributes] - X*
decompose R into R1(X U Y) and R2(X U Z)
Normalize(R1); Normalize(R2);

T
X CSE 414 — Autumn 2018 112

Example Example BCNF Decomposition

Name |SSN PhoneNumber | City

Fred [123-45-6789 |206-555-1234 |Seattle Name S5N City SSN > Name, City

Fred |123-45-6789 |206-555-6543 |Seattle Fred 123-45-6789 | Seattle

" Joe 987-65-4321 | Westfield
Joe 987-65-4321 |908-555-2121 | Westfield on
Joe 087-65-4321 |908-555-1234 |Westfield = Numbe
SSN > Name, City - 123-45-6789 206-555-1234 SSN+
Number 123-45-6789 | 206-555-6543 | | et's check anomalies:

The only key is: {SSN, PhoneNumber} 987-65-4321 908-555-2121 « Redundancy ?
Hence SSN - Name, City is a “bad” dependency SSN 087-65-4321 908-555-1234 « Update ?
In other words: * Delete ?
SSN+ = SSN, Name, City and is neither SSN nor All Attribdtes CSE 414 — Autumn 2018 14

Find X s.t.: X #X* and X* # [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age
age > hairColor

CSE 414 — Autumn 2018 115

Find X s.t.: X #X* and X* # [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age
age > hairColor

lteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

CSE 414 — Autumn 2018 116

Find X s.t.: X #X* and X* # [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumb
SSN - name, age What are
age > hairColor the keys ?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

CSE 414 — Autumn 2018 17

Find X s.t.: X #X* and X* # [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN - name, age

1
age > hairColor Note the keys!

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

CSE 414 — Autumn 2018 118

R(A,B,C,D)

Example: BCNF B3>C

R(A,B,C,D)

CSE 414 — Autumn 2018 119

R(A,B,C,D)

Example: BCNF E>C

Recall: find X s.t.
X ¢ X+ ¢ [all-attrs R(A,B,C,D)

CSE 414 — Autumn 2018 120

R(A,B,C,D)

R(A,B,C,D)

Example: BCNF B>C

R(A,B,C,D)
A+ =ABC #ABCD

CSE 414 — Autumn 2018 122

A > B
Example: BCNF B>C
R(A,B,C,D)
A+*=ABC # ABCD
CSE 414 — Autumn 2018 121
R(A,B,C,D)

Example: BCNF B>C

R(A,B,C,D)
A*=ABC #ABCD

R:(A,B,C)
B* = BC #ABC

CSE 414 — Autumn 2018 123

R(A,B,C,D)

Example: BCNF B>C

R(A,B,C,D)
A+ =ABC # ABCD
R:(A,B,C)
What are
the keys ?

B+=BC # ABC
What happens if in R we first pick B+ ? Or AB* ?

124

Getting Practical

How to implement normalization in SQL

CSE 414 — Autumn 2018 140

Motivation

* We learned about how to normalize tables to
avoid anomalies

* How can we implement normalization in SQL
if we can’t modify existing tables?

— This might be due to legacy applications that rely
on previous schemas to run

CSE 414 — Autumn 2018 141

Views

*« Aviewin SQL =
— A table computed from other tables, s.t., whenever

the base tables are updated, the view is updated
too

* More generally:

— A view is derived data that keeps track of changes
in the original data

« Compare:
— A function computes a value from other values,
but does not keep track of changes to the inputs

CSE 414 — Autumn 2018 142

Purchase(customer, product, store)

T StorePrice(store, price)
Product(pname, price)

A Simple View

Create a view that returns for each store
the prices of products purchased at that store

CREATE VIEW StorePrice AS
SELECT DISTINCT x.store, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

This is like a new table
StorePrice(store,price)

CSE 414 — Autumn 2018 143

Purchase(customer, product, store)
Product(pname, price)

We Use a View Like Any Table

StorePrice(store, price)

« A "high end" store is a store that sell some products
over 1000.

« For each customer, return all the high end stores that
they visit.

SELECT DISTINCT u.customer, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store

AND v.price > 1000

CSE 414 — Autumn 2018 144

Types of Views

 Virtual views
— Computed only on-demand — slow at runtime
— Always up to date

« Materialized views
— Pre-computed offline — fast at runtime
— May have stale data (must recompute or update)
— Indexes are materialized views

« A key component of physical tuning of databases is
the selection of materialized views and indexes

CSE 414 — Autumn 2018 145

10

Vertical Partitioning

Resumes|SSN Name |Address |Resume |Picture
234234 |Mary |Houston |Doc1... |JPG1...
345345 |Sue Seattle |Doc2... |JPG2...
345343 |Joan |Seattle |Doc3... |JPG3...
432432 |Ann Portland |Doc4... |JPGA4...

T 2 | | T3
SSN

SSN Name | Address Resume SSN Picture
234234 | Mary | Houston 234234 | Doc1... 234234 | JPGT...
345345 | Sue Seattle 345345 | Doc2... 345345 | JPG2...

T2.SSN is a key and a foreign key to T1.SSN. Same for T3.SSN T“‘G

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(gsn,name,address,resume,picture)

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

CSE 414 — Autumn 2018 147

T1(ssn,name,address)
T2(gsn,resume)
T3(ssn,picture)

Resumes(gsn,name,address,resume,picture)

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

SELECT address
FROM Resumes
WHERE name = ‘Sue’

CSE 414 — Autumn 2018 148

T1(ssn,name,address)
T2(gsn,resume)
T3(ssn,picture)

Resumes(gsn,name,address,resume,picture)

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,72,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Original query:

SELECT T1.address

FROMT1, T2, T3

WHERE T1.name = ‘Sue’
AND T1.SSN=T2.SSN
AND T1.SSN = T3.SSN

CSE 414 — Autumn 2018 149

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(gsn,name,address,resume,picture)

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,T2,T3

WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn ﬁ

SELECT address .
Modified query:

FROM Resumes
WHERE _name = Sue SELECT T1.address

f FROM T1, #2138

. WHERE T1.name = ‘Sue’
Final query: DT+ SSNF.
SELECT T1.address —ANDF-SSN=T3-88N
FROM T1

WHERE T1.name = ‘Sue’ 150

Vertical Partitioning Applications

« Advantages
— Speeds up queries that touch only a small fraction of columns
— Single column can be compressed effectively, reducing disk 1/O

« Disadvantages
— Updates are expensive!
— Need many joins to access many columns
— Repeated key columns add overhead

CSE 414 — Autumn 2018 151

11

Horizontal Partitioning

Customers

CustomersinHouston

SSN Name | City
234234 |Mary |Houston
345345 | Sue Seattle

CustomersinSeattle

345343 |Joan | Seattle SSN Name | City
234234 | Ann Portland 345345 | Sue |/Seattle ‘>
Frank | Calgary 345343 | Joan NSeattle

Jean | Montreal

CSE 414 — Autumn 2018 152

CustomersInHouston(gsn,name,city)
CustomersInSeattle(ssp,name,city)

Horizontal Partitioning

Customers(ssn,name,city)

CREATE VIEW Customers AS
CustomersinHouston
UNION ALL
CustomersInSeattle
UNION ALL

CSE 414 — Autumn 2018 153

CustomersIinHouston(ssn,name,city)
CustomersiInSeattle(ssn,name,city)

Horizontal Partitioning

Customers(ssn,name,city)

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

CSE 414 — Autumn 2018 154

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssp,name,city)

Horizontal Partitioning

Better: remove CustomerinHouston.city etc

Customers(ssn,name,city)

CREATE VIEW Customers AS
(SELECT SSN, name, ‘Houston’ as city
FROM CustomersinHouston)
UNION ALL
(SELECT SSN, name, ‘Seattle’ as city
FROM CustomersinSeattle)
UNION ALL

CSE 414 — Autumn 2018 156

CustomersIinHouston(ssn,hame,city)
CustomersInSeattle(ssn,name,city)

""" Horizontal Partitioning

Customers(ssn,name,city)

SELECT name
FROM Customers

WHERE city = ‘Seattle’

l

SELECT name
FROM CustomersinSeattle

CSE 414 — Autumn 2018 156

Horizontal Partitioning Applications

» Performance optimization
— Especially for data warehousing
— E.g., one partition per month
— E.g., archived applications and active applications

» Distributed and parallel databases

« Data integration

CSE 414 — Autumn 2018 157

12

Conclusion

Poor schemas can lead to performance
inefficiencies

E/R diagrams are means to structurally
visualize and design relational schemas

Normalization is a principled way of
converting schemas into a form that avoid
such problems

BCNF is one of the most widely used
normalized form in practice 158

13

