
Introduction to Database Systems
CSE 414

Lecture 27:
Implementation of Transactions

1CSE 414 - Autumn 2018

Announcements

• Fix quotes in Flights data
– See email/Piazza post
– https://piazza.com/class/jmftm54e88t2kk?cid=729

• Final exam Thu, Dec 13 – 2:30 here
– Will test concepts from entire class but

emphasis on post-midterm
– Previous finals are for reference only,

better to study lecture and section
materials

CSE 414 - Autumn 2018 2

Testing for Conflict-
Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 414 - Autumn 2018 3

Example 1

CSE 414 - Autumn 2018 4

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 414 - Autumn 2018 5

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

Example 2

CSE 414 - Autumn 2018 6

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 414 - Autumn 2018 7

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Implementing Transactions

CSE 414 - Autumn 2018 8

Scheduler

• Scheduler = the module that schedules the
transaction’s actions, ensuring
serializability

• Also called Concurrency Control Manager

• We discuss next how a scheduler may be
implemented

CSE 414 - Autumn 2018 9

Implementing a Scheduler

Major differences between database
vendors
• Locking Scheduler

– Aka “pessimistic concurrency control”
– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”
– Postgres, Oracle: Snapshot Isolation (SI)We discuss only locking schedulers in this class

10CSE 414 - Autumn 2018

Locking Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the

lock before reading/writing that element
• If the lock is taken by another

transaction, then wait
• The transaction must release the lock(s)

CSE 414 - Autumn 2018 11By using locks scheduler ensures conflict-serializability

What Data Elements are
Locked?

Major differences between vendors:

• Lock on the entire database
– SQLite

• Lock on individual records
– SQL Server, DB2, etc

CSE 414 - Autumn 2018 12

More Notations

CSE 414 - Autumn 2018 13

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

A Non-Serializable Schedule

CSE 414 - Autumn 2018 14

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

Example

CSE 414 - Autumn 2018 15

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Scheduler has ensured a conflict-serializable schedule

But what if…

16

T1 T2

L1(A); READ(A)

A := A+100

WRITE(A); U1(A);

L2(A); READ(A)

A := A*2

WRITE(A); U2(A);

L2(B); READ(B)

B := B*2

WRITE(B); U2(B);

L1(B); READ(B)

B := B+100

WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

CSE 414 - Autumn 2018 17

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions

CSE 414 - Autumn 2018 18

T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

Two Phase Locking (2PL)

19

Theorem: 2PL ensures conflict serializability

Two Phase Locking (2PL)
Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Two Phase Locking (2PL)

21

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

Two Phase Locking (2PL)

22

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

U1(A) happened
strictly before L2(A)

Two Phase Locking (2PL)

23

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

L2(A) happened
strictly before U1(A)

Two Phase Locking (2PL)

24

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

Two Phase Locking (2PL)

25

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B) why?

Two Phase Locking (2PL)

26

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)

......etc.....

Two Phase Locking (2PL)

27

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A)

Cycle in time:
Contradiction

A New Problem:
Non-recoverable Schedule

CSE 414 - Autumn 2018 28

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

A New Problem:

Non-recoverable Schedule

CSE 414 - Autumn 2018 29

T1 T2

L
1
(A); L

1
(B); READ(A)

A :=A+100

WRITE(A); U
1
(A)

L
2
(A); READ(A)

A := A*2

WRITE(A);

L
2
(B); BLOCKED…

READ(B)

B :=B+100

WRITE(B); U
1
(B);

…GRANTED; READ(B)

B := B*2

WRITE(B); U
2
(A); U

2
(B);

Commit

Rollback

Elements A, B written

by T1 are restored

to their original value.

A New Problem:

Non-recoverable Schedule

CSE 414 - Autumn 2018 30

T1 T2

L
1
(A); L

1
(B); READ(A)

A :=A+100

WRITE(A); U
1
(A)

L
2
(A); READ(A)

A := A*2

WRITE(A);

L
2
(B); BLOCKED…

READ(B)

B :=B+100

WRITE(B); U
1
(B);

…GRANTED; READ(B)

B := B*2

WRITE(B); U
2
(A); U

2
(B);

Commit

Rollback

Elements A, B written

by T1 are restored

to their original value.

Dirty reads of

A, B lead to

incorrect writes.

A New Problem:

Non-recoverable Schedule

CSE 414 - Autumn 2018 31

T1 T2

L
1
(A); L

1
(B); READ(A)

A :=A+100

WRITE(A); U
1
(A)

L
2
(A); READ(A)

A := A*2

WRITE(A);

L
2
(B); BLOCKED…

READ(B)

B :=B+100

WRITE(B); U
1
(B);

…GRANTED; READ(B)

B := B*2

WRITE(B); U
2
(A); U

2
(B);

Commit

Rollback

Elements A, B written

by T1 are restored

to their original value. Can no longer undo!

Dirty reads of

A, B lead to

incorrect writes.

Strict 2PL

CSE 414 - Autumn 2018 32

All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Strict 2PL

33

T1 T2

L1(A); READ(A)

A :=A+100

WRITE(A);

L2(A); BLOCKED…

L1(B); READ(B)

B :=B+100

WRITE(B);

Rollback & U1(A);U1(B);

…GRANTED; READ(A)

A := A*2

WRITE(A);

L2(B); READ(B)

B := B*2

WRITE(B);

Commit & U2(A); U2(B);

Strict 2PL

• Lock-based systems always use strict
2PL

• Easy to implement:
– Before a transaction reads or writes an

element A, insert an L(A)
– When the transaction commits/aborts, then

release all locks
• Ensures both conflict serializability and

recoverability CSE 414 - Autumn 2018 34

Another problem: Deadlocks

• T1: R(A), W(B)
• T2: R(B), W(A)

• T1 holds the lock on A, waits for B
• T2 holds the lock on B, waits for A

This is a deadlock!
CSE 414 - Autumn 2018 35

Another problem: Deadlocks
To detect a deadlocks, search for a cycle in the
waits-for graph:
• T1 waits for a lock held by T2;
• T2 waits for a lock held by T3;
• . . .
• Tn waits for a lock held by T1

Relatively expensive: check periodically, if deadlock is
found, then abort one transaction.
need to continuously re-check for deadlocks

36

A “Solution”: Lock Modes

• S = shared lock (for READ)

• X = exclusive lock (for WRITE)

CSE 414 - Autumn 2018 37

None S X

None

S

X

Lock compatibility matrix:

A “Solution”: Lock Modes

• S = shared lock (for READ)

• X = exclusive lock (for WRITE)

CSE 414 - Autumn 2018 38

None S X

None

S

X

Lock compatibility matrix:

Lock Granularity

• Fine granularity locking (e.g., tuples)
– High concurrency
– High overhead in managing locks
– E.g., SQL Server

• Coarse grain locking (e.g., tables, entire database)
– Many false conflicts
– Less overhead in managing locks
– E.g., SQL Lite

• Solution: lock escalation changes granularity as needed

CSE 414 - Autumn 2018 39

Lock Performance

CSE 414 - Autumn 2018 40

T
h
ro

u
g
h
p
u
t
(T

P
S

)

Active Transactions

thrashing

Why ?

TPS =

Transactions

per second

To avoid, use

admission control

Phantom Problem
• So far we have assumed the database to be a

static collection of elements (=tuples)

• If tuples are inserted/deleted then the phantom
problem appears

CSE 414 - Autumn 2018 41

Phantom Problem

CSE 414 - Autumn 2018 42

Is this schedule serializable ?

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Phantom Problem

CSE 414 - Autumn 2018 43

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2

SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W
2
(A3);R

1
(A1);R

1
(A2);R

1
(A1);R

1
(A2);R

1
(A3)

Phantom Problem

R
1
(A1);R

1
(A2);W

2
(A3);R

1
(A1);R

1
(A2);R

1
(A3)

T1 T2

SELECT *

FROM Product

WHERE color=‘blue’

INSERT INTO Product(name, color)

VALUES (‘A3’,’blue’)

SELECT *

FROM Product

WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

•44

Phantom Problem
• A “phantom” is a tuple that is

invisible during part of a transaction execution but
not invisible during the entire execution

• In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSE 414 - Autumn 2018 45

Dealing With Phantoms

• Lock the entire table

• Lock the index entry for ‘blue’

– If index is available

• Or use predicate locks

– A lock on an arbitrary predicate

CSE 414 - Autumn 2018 46

Dealing with phantoms is expensive !

Summary of Serializability

• Serializable schedule = equivalent to a serial
schedule

• (strict) 2PL guarantees conflict serializability
– What is the difference?

• Static database:
– Conflict serializability implies serializability

• Dynamic database:
– This no longer holds

CSE 414 - Autumn 2018 47

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 414 - Autumn 2018 48

ACID

1. Isolation Level: Dirty Reads

• “Long duration” WRITE locks
– Strict 2PL

• No READ locks
– Read-only transactions are never delayed

CSE 414 - Autumn 2018 49

Possible problems: dirty and inconsistent reads

2. Isolation Level: Read Committed

• “Long duration” WRITE locks
– Strict 2PL

• “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

CSE 414 - Autumn 2018 50

Unrepeatable reads:
When reading same element twice,
may get two different values

3. Isolation Level: Repeatable Read

• “Long duration” WRITE locks

– Strict 2PL

• “Long duration” READ locks

– Strict 2PL

CSE 414 - Autumn 2018 51

This is not serializable yet !!!

Why ?

4. Isolation Level Serializable

• “Long duration” WRITE locks
– Strict 2PL

• “Long duration” READ locks
– Strict 2PL

• Predicate locking
– To deal with phantoms

CSE 414 - Autumn 2018 52

Beware!

In commercial DBMSs:

• Default level is often NOT serializable

• Default level differs between DBMSs

• Some engines support subset of levels!

• Serializable may not be exactly ACID

– Locking ensures isolation, not atomicity

• Also, some DBMSs do NOT use locking and

different isolation levels can lead to different pbs

• Bottom line: RTFM for your DBMS!

CSE 414 - Autumn 2018 53

