
1

Introduction to Database Systems
CSE 414

Lecture 7: SQL Wrap-up and 
Relational Algebra

1CSE 414 - Autumn 2018

Announcements

• Additional Office Hours and room 
changes
– Website calendar is up-to-date

• Check email for Microsoft Azure invite
“Action required: Accept your Azure lab assignment”

CSE 414 - Autumn 2018 2

Subqueries
• A subquery is a SQL query nested inside a larger query
• Such inner-outer queries are called nested queries
• A subquery may occur in:

– A SELECT clause
• Must return single value

– A FROM clause
• Can return multi-valued relation

– A WHERE clause

• Rule of thumb: avoid nested queries when possible
– But sometimes it’s impossible, as we will see

CSE 414 - Autumn 2018 3

FWGHOS

Subqueries in FROM

Sometimes we need to compute an 
intermediate table only to use it later in a 
SELECT-FROM-WHERE
• Option 1: use a subquery in the FROM 

clause
• Option 2: use the WITH clause

– See textbook for details

CSE 414 - Autumn 2018 4

2. Subqueries in FROM

CSE 414 - Autumn 2018 5

SELECT X.pname
FROM (SELECT * 

FROM Product AS Y 
WHERE price > 20) as X

WHERE X.price < 500

Product (pname,  price, cid)
Company (cid, cname, city)

=

WITH myTable AS (SELECT * FROM Product AS Y WHERE price > 20)
SELECT X.pname
FROM myTable as X
WHERE X.price < 500

A subquery whose
result we called myTable

Subqueries in WHERE
• SELECT ……….. WHERE EXISTS (sub);
• SELECT ……….. WHERE NOT EXISTS (sub);
• SELECT ……….. WHERE attribute IN (sub);
• SELECT ……….. WHERE attribute NOT IN (sub);
• SELECT ……….. WHERE attribute > ANY (sub);
• SELECT ……….. WHERE attribute > ALL (sub);



2

Monotone Queries
• Definition A query Q is monotone if:

– Whenever we add tuples to one or more input tables, the 
answer to the query will not lose any of the tuples

CSE 414 - Autumn 2018 7

Product (pname,  price, cid)
Company (cid, cname, city)

Monotone Queries
• Theorem:  If Q is a SELECT-FROM-WHERE query 

that does not have subqueries, and no aggregates, 
then it is monotone.

CSE 414 - Autumn 2018 8

Monotone Queries
• Theorem:  If Q is a SELECT-FROM-WHERE query 

that does not have subqueries, and no aggregates, 
then it is monotone.

• Proof.  We use the nested loop semantics: if we 
insert a tuple in a relation Ri, this will not remove any 
tuples from the answer

CSE 414 - Autumn 2018 9

SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE  Conditions

for x1 in R1 do
for x2 in R2 do

…
for xn in Rn do
if Conditions
output (a1,…,ak)

Monotone Queries
• The query: 

is not monotone

10

Find all companies s.t. all their products have price < 200

Product (pname,  price, cid)
Company (cid, cname, city)

CSE 414 - Autumn 2018

Monotone Queries
• The query: 

is not monotone

11

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

Product (pname,  price, cid)
Company (cid, cname, city)

CSE 414 - Autumn 2018

Monotone Queries
• The query: 

is not monotone

• Consequence: If a query is not monotonic, then we 
cannot write it as a SELECT-FROM-WHERE query 
without nested subqueries

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname,  price, cid)
Company (cid, cname, city)

CSE 414 - Autumn 2018 12



3

Queries that must be nested

• Queries with universal quantifiers or with 
negation

CSE 414 - Autumn 2018 13

Queries that must be nested

• Queries with universal quantifiers or with 
negation

• Queries that use aggregates in certain ways
– sum(..) and count(*) are NOT monotone, 

because they do not satisfy set containment
– select count(*) from R is not monotone!

CSE 414 - Autumn 2018 14

SQL Idioms

15CSE 414 - Autumn 2018

Finding Witnesses

CSE 414 - Autumn 2018 16

Product (pname,  price, cid)
Company (cid, cname, city)

For each city, find the most expensive product made in that city

Finding Witnesses

CSE 414 - Autumn 2018 17

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e., the products with max price

For each city, find the most expensive product made in that city

Product (pname,  price, cid)
Company (cid, cname, city)

Finding Witnesses

CSE 414 - Autumn 2018 18

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

Product (pname,  price, cid)
Company (cid, cname, city)

WITH CityMax AS 
(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) 

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v, CityMax w
WHERE u.cid = v.cid

and u.city = w.city
and v.price = w.maxprice;



4

Finding Witnesses

CSE 414 - Autumn 2018 19

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,

(SELECT x.city, max(y.price) as maxprice
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city) w

WHERE u.cid = v.cid
and u.city = w.city
and v.price = w.maxprice;

Product (pname,  price, cid)
Company (cid, cname, city)

Finding Witnesses

CSE 414 - Autumn 2018 20

There is a more concise solution here:

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y

WHERE u.cid = v.cid and u.city = x.city
and x.cid = y.cid
GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price)

Product (pname,  price, cid)
Company (cid, cname, city)

SQL: Our first language for 

the relational model

• Projections

• Selections

• Joins (inner and outer)

• Inserts, updates, and deletes

• Aggregates

• Grouping

• Ordering

• Nested queries

CSE 414 - Autumn 2018 21

Relational Algebra

CSE 414 - Autumn 2018 22

Relational Algebra

• Set-at-a-time algebra, which 
manipulates relations

• In SQL we say what we want
• In RA we can express how to get it
• Every DBMS implementation converts a 

SQL query to RA in order to execute it
• An RA expression is called a query plan

CSE 414 - Autumn 2018 23

Why study another relational 
query language?

• RA is how SQL is implemented in 
DBMS
– We will see more of this in a few weeks

• RA opens up opportunities for query 
optimization

CSE 414 - Autumn 2018 24



5

Basics

CSE 414 - Autumn 2018 25

• Relations and attributes
• Functions that are applied to relations

– Return relations
R2 = σ (R1)

– Can be composed together
R3 = p (σ (R1))

– Often displayed using a tree rather than linearly
– Use Greek symbols: σ, p, δ, etc

Sets v.s. Bags

• Sets: {a,b,c}, {a,d,e,f}, { }, . . .
• Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two flavors:
• Set semantics  = standard Relational Algebra
• Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)
CSE 414 - Autumn 2018 26

Relational Algebra Operators
• Union ∪, intersection ∩, difference -
• Selection σ
• Projection π
• Cartesian product X, join ⨝
• (Rename ρ)
• Duplicate elimination δ
• Grouping and aggregation ɣ
• Sorting #

CSE 414 - Autumn 2018 27

RA

Extended RA

All operators take in 1 or more relations as inputs 
and return another relation

Union and Difference

CSE 414 - Autumn 2018 28

What do they mean over bags ?

R1 ∪ R2
R1 – R2

Only make sense if R1, R2 have the same schema

What about Intersection ?

• Derived operator using minus

• Derived using join

CSE 414 - Autumn 2018 29

R1 ∩ R2 = R1 – (R1 – R2)

R1 ∩ R2 = R1 ⨝ R2

Selection
• Returns all tuples which satisfy a condition

• Examples
– σSalary > 40000 (Employee)
– σname = “Smith” (Employee)

• The condition c can be =, <, <=, >, >=, <>
combined with AND, OR, NOT

CSE 414 - Autumn 2018 30

σc(R)



6

σSalary > 40000 (Employee)

SSN Name Salary
1234545 John 20000
5423341 Smith 60000
4352342 Fred 50000

SSN Name Salary
5423341 Smith 60000
4352342 Fred 50000

Employee

CSE 414 - Autumn 2018 31

Projection
• Eliminates columns

• Example: project social-security number 
and names:
– πSSN, Name (Employee) à Answer(SSN, Name)

CSE 414 - Autumn 2018 32

π A1,…,An (R)

Different semantics over sets or bags!  Why?

π Name,Salary (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000
John 20000

Employee

Name Salary
John 20000
John 60000

Bag semantics Set semantics

CSE 414 - Autumn 2018 33Which is more efficient?

Composing RA Operators

CSE 414 - Autumn 2018 34

no name zip disease
1 p1 98125 flu

2 p2 98125 heart

3 p3 98120 lung

4 p4 98120 heart

Patient

σdisease=‘heart’(Patient)

no name zip disease
2 p2 98125 heart

4 p4 98120 heart

zip disease
98125 flu

98125 heart

98120 lung

98120 heart

πzip,disease(Patient)

πzip,disease(σdisease=‘heart’(Patient))

zip disease
98125 heart

98120 heart

Cartesian Product

• Each tuple in R1 with each tuple in R2

• Rare in practice; mainly used to express joins

CSE 414 - Autumn 2018 35

R1 � R2

Name SSN
John 999999999
Tony 777777777

Employee
EmpSSN DepName
999999999 Emily
777777777 Joe

Dependent

Employee X Dependent
Name SSN EmpSSN DepName
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

Cross-Product Example

CSE 414 - Autumn 2018 36



7

Renaming

• Changes the schema, not the instance

• Example: 
– Given Employee(Name, SSN)
– ρN, S(Employee)   à Answer(N, S)

CSE 414 - Autumn 2018 37

ρB1,…,Bn (R)

Natural Join

• Meaning:  R1⨝R2 = PA(sq (R1 � R2))

• Where:
– Selection sq checks equality of all common 

attributes (i.e., attributes with same names)
– Projection PA eliminates duplicate common 

attributes
CSE 414 - Autumn 2018 38

R1 ⨝R2

Natural Join Example

CSE 414 - Autumn 2018 39

A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

R S

R ⨝S =
PABC(sR.B=S.B(R �S))

Natural Join Example 2

CSE 414 - Autumn 2018 40

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P     V

name age zip
Alice 54 98125
Bob 20 98120

age zip disease name

54 98125 heart Alice

20 98120 flu Bob

Natural Join
• Given schemas R(A, B, C, D), S(A, C, E), 

what is the schema of R ⨝ S ?

• Given R(A, B, C),  S(D, E), what is R ⨝ S?

• Given R(A, B),  S(A, B),  what is  R ⨝ S?

CSE 414 - Autumn 2018 41

Theta Join

• A join that involves a predicate

• Here q can be any condition
• No projection in this case!

• For our voters/patients example: 

42

R1 ⨝q R2   =  sq (R1 X R2)

P ⨝ P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V

AnonPatient (age, zip, disease)
Voters (name, age, zip)

CSE 414 - Autumn 2018



8

Equijoin
• A theta join where q is an equality predicate

• By far the most used variant of join in practice
• What is the relationship with natural join?

CSE 414 - Autumn 2018 43

R1 ⨝q R2   = sq (R1 � R2)

Equijoin Example

CSE 414 - Autumn 2018 44

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P    P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

P.age P.zip P.disease V.name V.age V.zip

54 98125 heart p1 54 98125

20 98120 flu p2 20 98120

Join Summary
• Theta-join: R ⨝q S = σq (R × S)

– Join of R and S with a join condition θ
– Cross-product followed by selection θ
– No projection

• Equijoin: R ⨝θ S = σθ (R × S)
– Join condition θ consists only of equalities
– No projection

• Natural join: R ⨝ S = πA (σθ (R × S))
– Equality on all fields with same name in R and in S
– Projection πA drops all redundant attributes

CSE 414 - Autumn 2018 45

So Which Join Is It ?
When we write R ⨝ S we usually mean an 
equijoin, but we often omit the equality 
predicate when it is clear from the context

CSE 414 - Autumn 2018 46

More Joins

• Outer join
– Include tuples with no matches in the output

– Use NULL values for missing attributes

– Does not eliminate duplicate columns

• Variants

– Left outer join

– Right outer join

– Full outer join

CSE 414 - Autumn 2018 47

Outer Join Example

CSE 414 - Autumn 2018 48

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P

P    ⋊ J

P.age P.zip P.diseas
e J.job J.age J.zip

54 98125 heart lawyer 54 98125

20 98120 flu cashier 20 98120

33 98120 lung null null null

AnnonJob J
job age zip
lawyer 54 98125
cashier 20 98120



9

Some Examples
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10
Project[sname](Supplier Join[sno=sno] 

(Supply Join[pno=pno] (Select[psize>10](Part))))

Using symbols:
πsname(Supplier ⨝ (Supply ⨝ (σpsize>10 (Part)))

Can be represented as trees as well

49

Representing RA Queries as Trees
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

CSE 414 - Autumn 2018 50

Part

Supplyσpsize>10

πsname

Answer

Supplier

Some Examples
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10
Project[sname](Supplier Join[sno=sno] 

(Supply Join[pno=pno] (Select[psize>10](Part))))

Name of supplier of red parts or parts with size greater than 10
Project[sname](Supplier Join[sno=sno]

(Supply Join[pno=pno]
((Select[psize>10](Part)) Union  

(Select[pcolor=‘red’](Part)))

Project[sname](Supplier Join[sno=sno] (Supply Join[pno=pno]
(Select[psize>10 OR pcolor=‘red’](Part))))

Can be represented as trees as well 51

Some Examples

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10

πsname(Supplier ⨝ (Supply ⨝ (σpsize>10 (Part)))

Name of supplier of red parts or parts with size greater than 10

πsname(Supplier ⨝ (Supply ⨝ (σ psize>10 (Part) ∪ σpcolor=‘red’ (Part) ) ) )

πsname(Supplier ⨝ (Supply ⨝ (σ psize>10 ��pcolor=‘red’ (Part) ) ) )

Can be represented as trees as well
CSE 414 - Autumn 2018 52

Relational Algebra Operators
• Union ∪, intersection ∩, difference -
• Selection σ
• Projection π
• Cartesian product X, join ⨝
• (Rename ρ)
• Duplicate elimination δ
• Grouping and aggregation ɣ
• Sorting #

CSE 414 - Autumn 2018 53

RA

Extended RA

All operators take in 1 or more relations as inputs 
and return another relation

Extended RA: Operators on 
Bags

• Duplicate elimination d
• Grouping g

– Takes in relation and a list of grouping operations 
(e.g., aggregates). Returns a new relation.

• Sorting t
– Takes in a relation, a list of attributes to sort on, 

and an order. Returns a new relation.

CSE 414 - Autumn 2018 54



10

Using Extended RA Operators

CSE 414 - Autumn 2018 55

SELECT city, sum(quantity)
FROM Sales
GROUP BY city

HAVING count(*) > 100

Sales(product, city, quantity)

g city, sum(quantity)→q, count(*) → c

s c > 100

P city, q

Answer

Typical Plan for a Query (1/2)

CSE 414 - Autumn 2018 56

R S

join condition

σselection condition

πfields

join condition

…

SELECT-PROJECT-JOIN

Query

Answer

SELECT fields
FROM R, S, …
WHERE condition

Typical Plan for a Query (1/2)

57

πfields

ɣfields, sum/count/min/max(fields)

σhaving condition

σwhere condition

join condition

… …

SELECT fields
FROM R, S, …
WHERE condition
GROUP BY fields
HAVING condition

CSE 414 - Autumn 2018

How about Subqueries?

CSE 414 - Autumn 2018 58

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’ 
and not exists

(SELECT *

FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSE 414 - Autumn 2018 59

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’ 
and not exists

(SELECT *

FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

σsstate=‘WA’

Supplier

πsno

Option 1: create nested plans

not exists

σprice>100

Supplier

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’ 

and not exists

(SELECT *

FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSE 414 - Autumn 2018 60

Correlation !

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)



11

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’ 

and not exists

(SELECT *

FROM Supply P
WHERE P.sno = Q.sno

and P.price > 100)

How about Subqueries?

CSE 414 - Autumn 2018 61

De-Correlation

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’
and Q.sno not in

(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’

and Q.sno not in

(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

How about Subqueries?

CSE 414 - Autumn 2018 62

(SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’)

EXCEPT

(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

EXCEPT = set difference

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)

Un-nesting

(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’)

EXCEPT
(SELECT P.sno
FROM Supply P
WHERE P.price > 100)

How about Subqueries?

CSE 414 - Autumn 2018 63

Supply

σsstate=‘WA’

Supplier

σPrice > 100

−
Finally…

πsnoπsno

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)

Summary of RA and SQL

• SQL = a declarative language where we 
say what data we want to retrieve

• RA = an algebra where we say how we 
want to retrieve the data

• Theorem: SQL and RA can express 
exactly the same class of queries

RDBMS translate SQL à RA, then optimize RACSE 414 - Autumn 2018 64

Summary of RA and SQL

• SQL (and RA) cannot express ALL queries 

that we could write in, say, Java

• Example:

– Parent(p,c):    find all descendants of ‘Alice’

– No RA query can compute this!

– This is called a recursive query
• Next lecture: Datalog is an extension that can 

compute recursive queries

CSE 414 - Autumn 2018 65


