Introduction to Database Systems
CSE 414

Lecture 8: Relational Algebra

CSE 414 - Autumn 2018

Announcements

+ HW3 is out — due Friday
- git pull upstream master

— Make sure you have email from Microsoft
Azure and log in

* Web quiz 2 due tonight

CSE 414 - Autumn 2018 2

Relational Algebra

CSE 414 - Autumn 2018

Relational Algebra

+ Set-at-a-time algebra, which
manipulates relations

* In SQL we say what we want

* In RA we can express how to get it

» Every DBMS implementation converts a
SQL query to RA in order to execute it

» An RA expression is called a query plan

CSE 414 - Autumn 2018 4

Why study another relational
query language?

* RAis how SQL is implemented in
DBMS

— We will see more of this in a few weeks

* RA opens up opportunities for query
optimization

CSE 414 - Autumn 2018

Basics

» Relations and attributes

» Functions that are applied to relations
— Return relations
R2=0 (R1)
— Can be composed together
R3 =7 (0 (R1))
— Often displayed using a tree rather than linearly
— Use Greek symboals: o, 7, 6, etc

CSE 414 - Autumn 2018 6

Relational Algebra Operators
Sets V.S. Bags « Union U, intersection-O, difference -

» Selection o

 Projection 1t m
* Cartesian product X, join <

* (Rename p)

* Duplicate elimination

» Sets: {a,b,c}, {a,d,e,f},{}, ...
» Bags:{a,a,b,c},{b,b,b,b,b}, ...

Relational Algebra has two flavors:
» Set semantics = standard Relational Algebra

» Bag semantics = extended Relational Algebra) GrOE‘p'”g and aggregation y
 Sorting T
DB systems implement bag semantics (Why?) All operators take in 1 or more relations as inputs
CSE 414 - Autumn 2015 ; and return another relation

What about Intersection ?
Union and Difference

* Derived operator using minus

R1U R2 [R1NR2=R1-(R1-R2)]|
R1-R2
Only make sense if R1, R2 have the same schema * Derived using join

R1 N R2=R11p>1R2

[What do they mean over bags ?]

CSE 414 - Autumn 2018 9 CSE 414 - Autumn 2018 10

. Emp|oyee SSN Name salary
SeleCtlon 1234545 John 20000
* Returns all tuples which satisfy a condition 5423341 Smith 60000
4352342 Fred 50000
o¢(R)
* Examples Osaay 0000 (EMployee)
— O'salary > 40000 (Employee)
SSN Name Salary
— Oname=-smrr (EMployee)
- 5423341 Smith 60000
» The condition ¢ can be =, <, <=, >, >=, <> 4352342 Frod 50000
combined with AND, OR, NOT ©

Projection
¢ Eliminates columns

T a1,.an (R)

« Example: project social-security number
and names:

— TTssn, Name (Employee) = Answer(SSN, Name)

[Different semantics over sets or bags! Why?]

Employee SSN Name Salary

1234545 John 20000

5423341 John 60000

4352342 John 20000

TT Name,salary (EMployee)
Name Salary Name Salary
John 20000 John 20000
John 60000 John 60000
John 20000
Bag semantics Set semantics

Which is more efficient? 1

Composing RA Operators

Patient Trzip,disease(Patient)
no |name |zip di zip i

1 p1 98125 flu 98125 flu

2 p2 98125 heart 98125 heart
3 p3 98120 lung 98120 lung
4 p4 98120 heart 98120 heart

Odisease="heart’ (Patient) Trzip,disease(cdisease=‘heart'(Patient))

no |name |zip di zip disease

2 p2 98125 heart 98125 heart

4 p4 98120 heart 98120 heart
CSE 414 - Autumn 2018 15

Cartesian Product
» Each tuple in R1 with each tuple in R2

R1 x R2

» Rare in practice; mainly used to express joins

CSE 414 - Autumn 2018 16

Cross-Product Example

Employee Dependent
Name SSN EmpSSN DepName
John 999999999 999999999 | Emily
Tony 777777777 777777777 | Joe
Employee X Dependent
Name SSN EmpSSN DepName

John 999999999 | 999999999 | Emily
John 999999999 | 777777777 | Joe
Tony TT7777777 | 999999999 | Emily
Tony 777777777 |\ 777777777 | Joe

CSE 414 - Autumn 2018 17

Renaming

» Changes the schema, not the instance

+ Example:
— Given Employee(Name, SSN)
—pn, s(Employee) > Answer(N, S)

CSE 414 - Autumn 2018 18

Natural Join
R1 < R2

* Meaning: R1><R2 =TIx(cq(R1 X R2))

* Where:
— Selection o checks equality of all common
attributes (i.e., attributes with same names)

— Projection T1a eliminates duplicate common
attributes

CSE 414 - Autumn 2018 19

Natural Join Example

R A B S B c

X Y z U

X z v w

Y z z v

z v
A B c
RS = X z u
Iasc(ore=s8(R X S)) X z v
Y z U
Y z v
z v w
CSE 414 - Autumn 2018 20

Natural Join Example 2

AnonPatient P Voters V
age |zip li name |age zip
54 98125 heart Alice 54 98125
20 98120 flu Bob 20 98120
PoaV
age |zip disease | name
54 98125 | heart Alice
20 98120 | flu Bob
CSE 414 - Autumn 2018 21

Natural Join

» Given schemas R(A, B, C, D), S(A, C, E),
what is the schema of Rp<1 S ?

- Given R(A, B, C), S(D, E), whatis R > S?

. Given R(A, B), S(A, B), whatis R S?

CSE 414 - Autumn 2018 22

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Theta Join

* Ajoin that involves a predicate

R1 R2 = o, (R1XR2)

* Here 6 can be any condition
* No projection in this case!
» For our voters/patients example:

P > P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 \Y

CSE 414 - Autumn 2018 23

Equijoin

» A theta join where 6 is an equality predicate

R1 <, R2 =0, (R1 X R2)

» By far the most used variant of join in practice
» What is the relationship with natural join?

CSE 414 - Autumn 2018 24

Equijoin Example

AnonPatient P Voters V
age |zip li name |age zip
54 98125 heart p1 54 98125
20 98120 flu p2 20 98120
P DqP.age=V.age V
P.age |P.zip P.disease | V.name |V.age V.zip
54 98125 | heart p1 54 98125
20 98120 |flu p2 20 98120

CSE 414 - Autumn 2018

Join Summary
* Theta-join: R<lp S = 0 (R x S)
— Join of R and S with a join condition 6
— Cross-product followed by selection 6
— No projection
* Equijoin: Rp<g S=0g (R % S)
— Join condition 6 consists only of equalities
— No projection
* Natural join: RS =14 (06 (R x S))
— Equality on all fields with same name inRand in S
— Projection 114 drops all redundant attributes

CSE 414 - Autumn 2018 26

So Which Join Is It ?

When we write R b S we usually mean an
equijoin, but we often omit the equality
predicate when it is clear from the context

CSE 414 - Autumn 2018

More Joins

+ Outer join
— Include tuples with no matches in the output
— Use NULL values for missing attributes
— Does not eliminate duplicate columns

» Variants
— Left outer join
— Right outer join
— Full outer join

CSE 414 - Autumn 2018 28

Outer Join Example

AnonPatient P
- = AnnondJob J
age |zip
54 98125 |heart job age |zip
20 98120 flu lawyer | 54 98125
33 98120 lung cashier | 20 98120
P.age | Pzip R.diseas J.job J.age |J.zip
P:)q J 54 98125 | heart lawyer |54 98125
20 98120 |flu cashier |20 98120
33 98120 |lung null null null

CSE 414 - Autumn 2018

Some Examples

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10
Project[sname](Supplier Join[sno=sno]
(Supply Join[pno=pno] (Select[psize>10](Part))))

Using symbols:
Tsname(Supplier > (Supply > (Tpsize>10 (Part)))

Can be represented as trees as well

CSE 414 - Autumn 2018 30

Representing RA Queries as Trees

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor) Answer
Supply(sho,pno,qty,price) I
—p T,

— — — — sname
- |

— — — — g ><]]

F
Mavams(Supplier > SUpPlY g (Opgzes1o (Par)) / _
\— _—] Supplier

7N\

\ Opsize>10 SUpply

Part

CSE 414 - Autumn 2018 31

Some Examples

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10
Tsname(Supplier > (Supply > (Tpsize>10 (Part)))

Name of supplier of red parts or parts with size greater than 10
Tsname(Supplier > (Supply D (0 psize>10 v peolor=rrea (Part))))
Tsname(Supplier > (Supply D< (0 psize>10 (Part) U Opcolor=rea (Part))))

CSE 414 - Autumn 2018 32

Relational Algebra Operators
* Union U, intersection-Odifference -
» Selection o
 Projection 1T m
« Cartesian product X, join
* (Rename p)
* Duplicate elimination &

« Grouping and aggregation y
» Sorting T

&

All operators take in 1 or more relations as inputs
and return another relation

Extended RA: Operators on
Bags
» Duplicate elimination &
» Grouping y

— Takes in relation and a list of grouping operations
(e.g., aggregates). Returns a new relation.
» Sorting t
— Takes in a relation, a list of attributes to sort on,
and an order. Returns a new relation.

CSE 414 - Autumn 2018 34

Grouping
» Specify groups and aggregates

Y A1,....An, sum/max(B1)...(R)

« Example: project social-security number
and names:

» Output is like project: only output is
attributes in the subscript

+ Can also rename: ¥ x soun(e) —coun(R)

CSE 414 - Autumn 2018 35

Using Extended RA Operators

Answer
SELECT city, sum(quantity) I
FROM Sales I city, q
GROUP BY city
HAVING count(*) > 100
i G ¢ > 100

Y city, sum(quantity)—q, count(*) — ¢

Sales(product, city, quantity)

CSE 414 - Autumn 2018 36

Typical Plan for a Query (1/2)

Answer
| N SELECT fields
THelds FROM R, S, ..
WHERE condition
Oselection condition
I SELECT-PROJECT-JOIN
joincondition > Query
joincondition s
R S J
CSE 414 - Autumn 2018 37

Typical Plan for a Query (1/2)

0lhaving condition

SELECT fields

Yfields, sum/count/min/max(fields)

FROM R, S, ..
I WHERE condition
Tlfields .

GROUP BY fields

o I " HAVING condition

'where condition
joincondition
CSE 414 - Autumn 2018 38

Supplier(sng, sname,scity,sstate)
Part(gno, pname, psize,pcolor)
Supply(gno.pno,price)

How about Subqueries?

Return all suppliers in WA that sell no products greater than $100

CSE 414 - Autumn 2018 39

supplier(sng, sname,scity,sstate)
Part(gno, pname, psize,pcolor)
Supply(sno.pno,price)

How about Subqueries?

SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’
and not exists
(SELECT *

FROM Supply P
WHERE P.snho = Q.sho
and P.price > 100)

Return all suppliers in WA that sell no products greater than $100

CSE 414 - Autumn 2018 40

Ssupplier(sng, sname,scity, sstate)
Part(gno, pname, psize,pcolor)
Supply(gno.pno,price)

How about Subqueries?

Option 1: create nested plans

SELECT Q.snho TTsno

FROM Supplier Q |

WHERE Q.sstate = ‘WA’ Osstate=wa’
and not exists / \
(SELECT * not exists Supplier

FROM Supply P
WHERE P.sno = Q.sno o
and P.price > 100) price>100

Supplier

CSE 414 - Autumn 2018 41

supplier(sng, sname,scity,sstate)
Part(gno, pname, psize,pcolor)
Supply(sno.pno,price)

How about Subqueries?

SELECT Q.sno

FROM Supplier

WHERE Q.sstate = ‘WA’
and not exists
(SELECT *

FROM Supply P
WHERE P.snho = Q.sho
and P.price > 100)

Correlation !

CSE 414 - Autumn 2018 42

supplier(sng, sname,scity,sstate)
Part(gno, pname, psize,pcolor)
Supply(gno.pno,price)

How about Subqueries?

‘:ﬂ De-Correlation

SELECT Q.snho
FROM Supplier Q

supplier(sng, sname,scity,sstate)
Part(gno, pname, psize,pcolor)
Supply(gno.pno,price)

WHERE Q.sstate = ‘WA’
and not exists
(SELECT *

FROM Supply P

WHERE P.sno = Q.sho
and P.price > 100)| (SELECT P.sno

FROM Supply P

WHERE P.price > 100)

SELECT Q.sho
FROM Supplier Q

WHERE Q.sstate = ‘WA’
and Q.sno not in

How about Subqueries?
(SELECT Q.sno

FROM Supplier Q

WHERE Q.sstate = ‘WA’) SELECT Q.sno
EXCEPT FROM Supplier Q
(SELECT P.sno WHERE Q.sstate = ‘WA’

FROM Supply P and Q.sno not in
WHERE P.price > 100) (SELECT P.sno

CSE 414 - Autumn 2018 43

FROM Supply P

EXCEPT = set difference WHERE P.price > 100)

CSE 414 - Autumn 2018 44

Supplier(sng, sname,scity,sstate)
Part(gno, pname, psize,pcolor)
Supply(gno.pno,price)

How about Subqueries?
(SELECT Q.snho

Finally...
FROM Supplier Q -

WHERE Q.sstate = WA’) /\
EXCEPT :> Teno Tlsno

(SELECT P.sno | |

FROM Supply P
WHERE P.price > 100)

Osstate=WA’ OPrice > 100

Supplier Supply

CSE 414 - Autumn 2018 45

Summary of RA and SQL

» SQL = a declarative language where we
say what data we want to retrieve

* RA = an algebra where we say how we
want to retrieve the data

* Theorem: SQL and RA can express
exactly the same class of queries

|RDBMS translate SQL > RA, then optimize RA |

Summary of RA and SQL

« SQL (and RA) cannot express ALL queries
that we could write in, say, Java

» Example:
— Parent(p,c): find all descendants of ‘Alice’
— No RA query can compute this!
— This is called a recursive query

» Next lecture: Datalog is an extension that can
compute recursive queries

CSE 414 - Autumn 2018 47

Class Overview

* Unit 1: Intro

* Unit 2: Relational Data Models and Query Languages
— Data models, SQL, Relational Algebra, Datalog

 Unit 3: Non-relational data

« Unit 4: RDMBS internals and query optimization

« Unit 5: Parallel query processing

« Unit 6: DBMS usability, conceptual design

* Unit 7: Transactions

CSE 414 - Autumn 2018 48

What is Datalog?

+ Another query language for relational model
— Designed in the 80’s
— Simple, concise, elegant
— Extends relational queries with recursion
» Today is a hot topic:
— Souffle (we will use in HW4)
— Eve http://witheve.com/
— Differential datalog
https://github.com/frankmcsherry/differential-
dataflow

— Beyond databases in many research projects:
network protocals; statia.pregram analysis 49

» Open-source implementation of Datalog DBMS
» Under active development

» Commercial implementations are available
— More difficult to set up and use

 “sqlite” of Datalog
— Set-based rather than bag-based

« Install in your VM
— Run sudo yum install souffle in terminal
— More details in upcoming HW4

CSE 414 - Autumn 2018 50

Why bother with yet another
relational query language?

CSE 414 - Autumn 2018 51

Example: storing FB friends

Person1 | Person2 |is_friend
Peter John 1
Or John Mary 0
Mary Phil 1
Phil Peter 1
As a graph As a relation

We will learn the tradeoffs of different
data models later this quarter

CSE 414 - Autumn 2018 52

Compute your friends graph

Actor(id, fname, Iname)

Casts(pid, mid) € Schema

Movie(id, name, year)

SELECT f.p2
FROM Friends as f

WHERE f.pl = ‘me’ AND f.isFriend

p1 p2 isFriend
Peter John 1 My own friends
John Mary 0 SELECT f1.p2
M Phil 1 FROM Friends as f1,
éw ! (SELECT f.p2
Phil Peter 1 FROM Friends as f
WHERE f.pl = ‘me’ AND

) K) f.isFriend = 1) as f2
Friends(pl, p2, isFriend) |WHERE f1.p1 = f2.p2 AND
fl.isFriend = 1

My FoF
Datalog allows us to write 1y FoFoF ... My FoFoFoF |

recursive queries easily . PN
CSE 4147er30qkoes It end et

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

CSE 414 - Autumn 2018 54

http://witheve.com/
https://github.com/frankmcsherry/differential-dataflow

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

querie
Table declaration

Rules =

Facts = tuples in the database

.decl Actor(id:number, fname:symbol, lname:symbo.
.decl Casts(id:number, mid:number)
.decl Movie(id:number, name:symbol, year:number)

Types in Souffle:
number
symbol (aka varchar)

Insert data

Actor (344759, ‘Douglas’, ‘Fowley’).
Casts (344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1918).
Movie(29000, ‘Arizona’, 1940).

Movie (29445, ‘Ave Mar‘ia’i 1949) .

CSE 414 - Autumn 2018 55

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759, ‘Douglas’, ‘Fowley’).
Casts (344759, 29851). |Q1(y) :- Movie(x,y,z), z=1940. |
Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie (29000, ‘Arizona’, 1940).

Movie (29445, ‘Ave Maria’, 1940).

|Find Movies made in 1940|

CSE 414 - Autumn 2018 57

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor (344759, ‘Douglas’, ‘Fowley’).
Casts(344759, 29851).

loi(y) :- Movie(x,y,z), z=1940. |

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).

Movie (29000, ‘Arizona’, 1940).

Movie (29445, ‘Ave Maria’, 1940).
—_—

CSE 414 - Autumn 2018

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor (344759, ‘Douglas’, ‘Fowley’).
Casts(344759, 29851).

IQl(y) :- Movie(x,y,z), z=1940. |

Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).

Movie (29000, ‘Arizona’, 1940). SQL
Movie (29445, ‘Ave Maria’, 1940).

SELECT name
FROM Movie

WHERE year = 1940

|Find Movies made in 1940|

CSE 414 - Autumn 2018

Actor(id, fname, Iname)

Casts(pid, mid)

Movie(id, name, year)
\Id, name, yed!

Datalog: Facts and Rules

Facts = tuples in the database Rules = queri{esw

o
a 1 \/g!\‘(
Actor(344759, ‘Douglas’, ‘Fowley’). . =
Casts (344759, 29851). lorw) ;- Movie(x,y,2), z-1040. |

Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie (29000, ‘Arizona’, 1940).

Movie (29445, ‘Ave Maria’, 1940).

[« Order of variable matters! >

|Find Movies made in 1940|

CSE 414 - Autumn 2018 59

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor (344759, ‘Douglas’, ‘Fowley’).

Casts(344759, 29851).
2=1940.

| Q1(y) :- Movie(iDontCare,y,z),

Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie (29000, ‘Arizona’, 1940).

Movie (29445, ‘Ave Maria’, 1940).

|Find Movies made in 1940|

CSE 414 - Autumn 2018

10

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759, ‘Douglas’, ‘Fowley’).
Casts (344759, 29851). |Q1(y) :- Movie(_,y,z), z=1940. |

Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910). = “don’t care” variables
Movie (29000, ‘Arizona’, 1940). —

Movie (29445, ‘Ave Maria’, 1940).
—_—

Find Movies made in 1940

CSE 414 - Autumn 2018 61

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759, ‘Douglas’, ‘Fowley’).
Casts (344759, 29851). |Q1(y) :- Movie(x,y,z), z=1940. |

Casts (355713, 29000).

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor (344759, ‘Douglas’, ‘Fowley’).
Casts (344759, 29851). |Q1(y> ;- Movie(x,y,z), z=1940. l

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910). |Q2L1) ~ Actor‘(z)U Casts,(/l@

Movie (29000, ‘Arizona’, 1940). ov1e®y,1948

Movie (29445, ‘Ave Maria’, 1940)

CSE 414 - Autumn 2018 62

: A N : N
Movie(7909, A Night in Armour’, 1910). Q2(f,1) :- Actor(z,f,1), Casts(z,x),
Movie (29000, ‘Arizona’, 1940). Movie(x,y,1940).

Movie (29445, ‘Ave Maria’, 1940).

|Find Actors who acted in Movies made in 1940 |

CSE 414 - Autumn 2018 63

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor (344759, ‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

IQl(y) :- Movie(x,y,z), z=1940. |

Movie(79@9, ‘A Night in Armour’, 1910). Q2(f,1) :- Actor(z,f,1), Casts(z,x),
Movie (29000, ‘Arizona’, 1940). Movie(x,y,1940).

Movie (29445, ‘Ave Maria’, 1940).

Q3(f,1) :- Actor(z,f,1l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940).

CSE 414 - Autumn 2018 64

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759, ‘Douglas’, ‘Fowley’).
Casts (344759, 29851). |Q1(y) ;- Movie(x,y,z), z=1940. |

Casts(355713, 29000).

: A N3 : N
Movie(7909, ‘A Night in Armour’, 1910). Q2(f,1) :- Actor(z,f,1), Casts(z,x),
Movie (29000, ‘Arizona’, 1940). Movie(x,y,1940).

Movie (29445, ‘Ave Maria’, 1940).

Q3(f,1) :- Actor(z,f,1), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940).

| Find Actors who acted in a Movie in 1940 and in one in 1910 |

CSE 414 - Autumn 2018 65

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor (344759, ‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

IQl(y) :- Movie(x,y,z), z=1940. |

Movie(79@9, ‘A Night in Armour’, 1910). Q2(f,1) :- Actor(z,f,1), Casts(z,x),
Movie (29000, ‘Arizona’, 1940). Movie(x,y,1940).

Movie (29445, ‘Ave Maria’, 1940).

Q3(f,1) :- Actor(z,f,1l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940).

Extensional Database Predicates = EDB = Actor, Casts, Movie

Intensional Database Predicates = IDB = Q1, Q2, Q3
CSE 414 - Autumn 2018 66

11

