
Introduction to Data Management 
CSE 344

Unit 3: NoSQL, JSON, Semistructured
Data

(3 lectures*)

*Slides may change: refresh each lecture



Introduction to Data Management 
CSE 344

Lecture 11: NoSQL

2CSE 414 - 2019sp



Announcements

• HW3 (Azure) due on Friday

• HW4 (datalog) due next Friday

• Midterm next Friday (May 3rd)

CSE 414 - 2019sp 3



Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data

– NoSQL
– JSON
– SQL++

• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design
• Unit 7: Transactions
• Unit 8: Advanced topics (time permitting) 4



Two Classes of 
Database Applications

• OLTP (Online Transaction Processing)
– Queries are simple lookups: 0 or 1 join

E.g., find customer by ID and their orders
– Many updates. E.g., insert order, update payment
– Consistency is critical: transactions (more later)

• OLAP (Online Analytical Processing)
– aka “Decision Support”
– Queries have many joins, and group-by’s

E.g., sum revenues by store, product, clerk, date
– No updates

CSE 414 - 2019sp 5



RDBMS Architectures

• Serverless

• 2 tier: client/server

• 3 tier: client/app-server/db-server

CSE 414 - 2019sp 6



RDBMS: Serverless

CSE 414 - 2019sp 7

User
SQLite:
• One data file
• One user
• One DBMS application

• Consistency is easy
• But only a limited number of 

scenarios work with such model

DBMS
Application

(SQLite)

File

Desktop

Data file

Disk



RDBMS: Client-Server

Server Machine

Connection (JDBC, ODBC)

8

Client 
Applications

• One server running the database
• Many clients, connecting via the ODBC or JDBC 

(Java Database Connectivity) protocol

DB Server

File 1

File 2

File 3



RDBMS: Client-Server

Server Machine

Connection (JDBC, ODBC)

9

Client 
Applications

• One server running the database
• Many clients, connecting via the ODBC or JDBC 

(Java Database Connectivity) protocol

Many users and apps
Consistency is harder à

transactions

DB Server

File 1

File 2

File 3



10

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

CSE 414 - 2019sp



11

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or
– psql (for postgres)
– Some Java program (HW8) or some C++ program

CSE 414 - 2019sp



12

Client-Server

• One server that runs the DBMS (or RDBMS):
– Your own desktop, or
– Some beefy system, or
– A cloud service (SQL Azure)

• Many clients run apps and connect to DBMS
– Microsoft’s Management Studio (for SQL Server), or
– psql (for postgres)
– Some Java program (HW8) or some C++ program

• Clients “talk” to server using JDBC/ODBC 
protocol

CSE 414 - 2019sp



Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

13

Browser

CSE 414 - 2019sp



Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

14

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL

Browser

CSE 414 - 2019sp



Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

15

App+Web Server

Web-based applications

Connection
(e.g., JDBC)

HTTP/SSL

Browser

CSE 414 - 2019sp



Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

16

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web ServerCSE 414 - 2019sp

Web-based applications



Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

17

Why not replicate DB server?

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup



Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

18

Why not replicate DB server?
Consistency!

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup



NoSQL Motivation

• Originally motivated by Web 2.0 applications
– E.g. Facebook, Amazon, Instagram, etc
– Startups need to scaleup from 10 to 107 quickly

• Needed: very large scale OLTP workloads
• Give up on consistency, give up OLAP
• NoSQL: reduce functionality

– Simpler data model
– Very restricted updates

19



Replicating the Database

• Two basic approaches:
– Scale up through partitioning – “sharding”
– Scale up through replication

• Consistency is much harder to enforce

CSE 414 - 2019sp 20



Scale Through Partitioning

• Partition the database across many machines in a cluster
– Database now fits in main memory
– Queries spread across these machines

• Can increase throughput 
• Easy for writes but reads become expensive!

CSE 414 - 2019sp 21

Application
updates here May also

update here
Three partitions



Scale Through Replication

• Create multiple copies of each database partition
• Spread queries across these replicas
• Can increase throughput and lower latency
• Can also improve fault-tolerance
• Easy for reads but writes become expensive!

CSE 414 - 2019sp 22

App 1
updates
here only

App 2
updates
here onlyThree replicas



Relational Model à NoSQL

• Relational DB: difficult to replicate/partition.Eg
Supplier(sno,…),Part(pno,…),Supply(sno,pno)
– Partition: we may be forced to join across servers
– Replication: local copy has inconsistent versions
– Consistency is hard in both cases (why?)

• NoSQL: simplified data model
– Given up on functionality
– Application must now handle joins and 

consistency

23



Data Models

Taxonomy based on data models:
• Key-value stores

– e.g., Project Voldemort, Memcached
• Document stores

– e.g., SimpleDB, CouchDB, MongoDB
• Extensible Record Stores

– e.g., HBase, Cassandra, PNUTS

CSE 414 - 2019sp 24

☞



Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)



Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported



Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported

• Distribution / Partitioning – w/ hash function
– No replication: key k is stored at server h(k)
– 3-way replication: key k stored at h1(k),h2(k),h3(k)



Key-Value Stores Features

• Data model: (key,value) pairs
– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Operations
– get(key), put(key,value)
– Operations on value not supported

• Distribution / Partitioning – w/ hash function
– No replication: key k is stored at server h(k)
– 3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work?  How does put(k,v) work?



Example

• How would you represent the Flights data as key, 
value pairs?

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?



Example

• How would you represent the Flights data as key, 
value pairs?

• Option 1: key=fid, value=entire flight record

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?



Example

• How would you represent the Flights data as key, 
value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?



Example

• How would you represent the Flights data as key, 
value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?



Key-Value Stores Internals

• Partitioning:
– Use a hash function h
– Store every (key,value) pair on server h(key)

• Replication:
– Store each key on (say) three servers
– On update, propagate change to the other servers; 

eventual consistency
– Issue: when an app reads one replica, it may be stale

• Usually: combine partitioning+replication



Data Models

Taxonomy based on data models:
• Key-value stores

– e.g., Project Voldemort, Memcached
• Document stores

– e.g., SimpleDB, CouchDB, MongoDB
• Extensible Record Stores

– e.g., HBase, Cassandra, PNUTS

CSE 414 - 2019sp 34

☞



Motivation

• In Key, Value stores, the Value is often a very 
complex object
– Key = ‘2010/7/1’, Value = [all flights that date]

• Better: value to be structured data
– JSON or Protobuf or XML
– Called a  “document” but it’s just data

35We will discuss JSON



Data Models

Taxonomy based on data models:
• Key-value stores

– e.g., Project Voldemort, Memcached
• Document stores

– e.g., SimpleDB, CouchDB, MongoDB
• Extensible Record Stores

– e.g., HBase, Cassandra, PNUTS

CSE 414 - 2019sp 36

☞



Extensible Record Stores

• Based on Google’s BigTable
• HBase is an open source implementation of BigTable

• Data model:
– Variant 1: key = rowID, value = record
– Variant 2: key = (rowID, columnID), value = field

• Will not discuss in class

CSE 414 - 2019sp 37



Introduction to Data Management 
CSE 344

Lecture 12:
JSON, Semistructured Data, SQL++

38CSE 414 - 2019sp



Where We Are

• So far we have studied the relational data model
– Data is stored in tables(=relations)
– Queries are expressions in SQL, 

relational algebra, or Datalog

• Today: Semistructured data model
– Popular formats today: XML, JSON, protobuf

CSE 414 - 2019sp 39



JSON - Overview

• JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C, 
C++, Java, Python, Perl, etc.

• The filename extension is .json.

CSE 414 - 2019sp 40We will emphasize JSON as semi-structured data



41

JSON Syntax
{  "book": [

{"id":"01",
"language": "Java",
"author": "H. Javeson",
"year": 2015
},
{"id":"07",
"language": "C++",
"edition": "second"
"author": "E. Sepp",
"price": 22.25
}

]
}

CSE 414 - 2019sp



JSON vs Relational

• Relational data model 
– Rigid flat structure (tables)
– Schema must be fixed in advanced
– Binary representation: good for performance, bad for exchange
– Query language based on Relational Calculus

• Semistructured data model / JSON
– Flexible, nested structure (trees)
– Does not require predefined schema ("self-describing”)
– Text representation: good for exchange, bad for performance
– Most common use: Language API; query languages emerging

CSE 414 - 2019sp 42



JSON Types

• Primitive: number, string, Boolean, null

• Object: collection of name-value pairs:
– {“name1”: value1, “name2”: value2, …}
– “name” is also called a “key”

• Array: ordered list of values:
– [obj1, obj2, obj3, ...]

CSE 414 - 2019sp 43https://www.json.org/



Avoid Using Duplicate Keys

CSE 414 - 2019sp 44

{"id":"07",
"title": "Databases",
"author": "Garcia-Molina",
"author": "Ullman",
"author": "Widom"

}

{"id":"07",
"title": "Databases",
"author": ["Garcia-Molina",

"Ullman",
"Widom"]

}

The standard allows them, but many implementations don’t
Use an ordered list instead



45

JSON Semantics: a Tree !
person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
[ {“name”: “Mary”,

“address”: 
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

0
1



46

JSON Semantics: a Tree !
person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
[ {“name”: “Mary”,

“address”: 
{“street”:“Maple”,
“no”:345,
“city”: “Seattle”}},

{“name”: “John”,
“address”: “Thailand”,
“phone”:2345678}}

]
}

Object 0
Object 1

Recall: arrays are ordered in JSON!

0
1



47

Intro to Semi-structured Data

• JSON is self-describing
• Schema elements become part of the data

– Relational schema: person(name,phone)
– In JSON “person”, “name”, “phone” 

are part of the data, and are repeated many times
• ⇨ JSON is more flexible

– Schema can change per tuple

CSE 414 - 2019sp



Mapping Relational Data to JSON

CSE 414 - 2019sp 48

name name namephone phone phone

“John” 3634 “Sue” “Dirk”6343 6363
Person

person

name phone
John 3634
Sue 6343
Dirk 6363

{“person”: [
{“name”: “John”, “phone”:3634},
{“name”: “Sue”,  “phone”:6343},
{“name”: “Dirk”, “phone”:6383}
]

}



Mapping Relational Data to JSON

49

Person
name phone
John 3634
Sue 6343

May inline multiple relations based on foreign keys

Orders
personName date product
John 2002 Gizmo
John 2004 Gadget
Sue 2002 Gadget

{“Person”:
[{"name": "John",
"phone":3646,
"Orders":[
{"date":2002,"product":"Gizmo"},
{“date”:2004,"product":"Gadget"}
]
},
{"name": "Sue",
"phone":6343,
"Orders":[
{"date":2002,"product":"Gadget"}
]
}
]
}



Mapping Relational Data to JSON

Person
name phone
John 3634
Sue 6343

Many-many relationships are more difficult to represent

Orders
personName date product
John 2002 Gizmo
John 2004 Gadget
Sue 2002 Gadget

prodName price
Gizmo 19.99
Phone 29.99
Gadget 9.99

Product

Options for the JSON file:
• 3 flat relations:

Person,Orders,Product
• PersonàOrdersàProducts

products are duplicated
• ProductàOrdersàPerson

persons are duplicated



51

Semi-structured data

• Missing attributes:

• Could represent in
a table with nulls 

name phone
John 1234
Joe NULL

CSE 414 - 2019sp

{“person”:
[{“name”:“John”, “phone”:1234},
{“name”:“Joe”}]

} no phone !



52

Semi-structured data

• Repeated attributes

• Impossible in 
one table:

name phone
Mary 2345 3456 ???

CSE 414 - 2019sp

{“person”:
[{“name”:”John”, “phone”:1234},
{“name”:”Mary”, “phone”:[1234,5678]}]

}
Two phones !



53

Semi-structured data

• Attributes with different types in different objects

• Nested collections 
• Heterogeneous collections

• These are difficult to represent in the relational model

{“person”:
[{“name”:“Sue”, “phone”:3456},
{“name”:{“first”:“John”, “last”:“Smith”},“phone”:2345}
]

}

Structured
name !



Discussion: Why Semi-Structured Data?

• Semi-structured data works well
as data exchange formats
-- i.e., exchanging data between different apps
-- Examples: XML, JSON, Protobuf (protocol buffers)

• Increasingly, systems use them 
as a data model for databases:
-- SQL Server supports for XML-valued relations
-- CouchBase, MongoDB, Snowflake: JSON
-- Dremel (BigQuery): Protobuf

CSE 414 - 2019sp 54



Query Languages for 
Semi-Structured Data

XML: XPath, XQuery (see textbook)
• Supported inside many RDBMS (SQL Server, DB2, Oracle)
• Several standalone XPath/XQuery engines

Protobuf:
• Dremel (~ SQL): google internal
• BigQuery (~ SQL): google external

JSON:
• CouchBase: N1QL
• AsterixDB: SQL++ (~ SQL)
• MongoDB: JSONiq: http://www.jsoniq.org/

http://www.jsoniq.org/


• AsterixDB
– NoSQL database system
– Developed at UC Irvine
– Now an Apache project, being incorporated into 

CouchDB (another NoSQL DB)

• Uses JSON as data model
• Query language: SQL++

– SQL-like syntax for JSON data
CSE 414 - 2019sp 56



ADM Derived Types
• Based on the JSON standard
• Objects:

– {“Name”: “Alice”, “age”: 40}
– Fields must be distinct:

{“Name”: “Alice”, “age”: 40, “age”:50}

• Ordered arrays:
– [1, 3, “Fred”, 2, 9]
– Can contain values of different types

• Multisets (aka bags):
– {{1, 3, “Fred”, 1, 9}}
– Mostly internal use only but can be used as inputs
– All multisets are converted into ordered arrays (in arbitrary 

order) when returned at the end 
57

Can’t have
repeated fields



Basic Queries

What do these queries return?

58

SELECT x.name
FROM [{"name": "Alice", "phone": [300, 150]}] AS x;

Answer:  {“name”: “Alice”}

SELECT x.phone
FROM [{"name": "Alice", "phone": [300, 150]}] AS x;

Answer:  {“phone”: [300, 150]}

SELECT x.name, x.phone
FROM [{"name": "Alice", "phone": [300, 150]}] AS x;

Answer:  {“name”: “Alice”, “phone”: [300, 150]}



Query FROM Array / Multiset

What do these queries return?

59

SELECT x.name
FROM [{"name": "Alice", "phone": [300, 150]}] AS x;

Answer:  {“name”: “Alice”}

SELECT x.phone
FROM {{ {"name": "Alice", "phone": [300, 150]} }} AS x;

Answer:  the same

-- error
SELECT x.phone
FROM {"name": "Alice", "phone": [300, 150]} AS x;

Can only query from
multi-set or array (not object)



Query Nested Collections

What do these queries return?

60

SELECT y
FROM [{"name": "Alice", "phone": [300, 150]}] AS x,

x.phone AS y;

300
150Answer

SELECT y
FROM [{"name": "Alice", "phone": [300, 150]}] AS x,

x.phone AS y
WHERE y > 200;

300Answer



Query Semi-structured Data

What do these queries return?

61

SELECT x.a FROM [{"a":1, "b":2}, {"a":3}] AS x;

{”a": 1}
{"a": 3}Answer

SELECT x.b FROM [{"a":1, "b":2}, {"a":3}] AS x;

{”b": 2}
{  }Answer

SELECT x.a, x.b FROM [{"a":1, "b":2}, {"a":3}] AS x;

{"a":1, "b":2}
{"a":3 }Answer



Datatypes

• Boolean, integer, float (various precisions), 
geometry (point, line, …), date, time, etc

• UUID = universally unique identifier
Use it as a system-generated unique key

• Values:
– NULL means null
– MISSING means it’s not there (see next)

62



null v.s. missing
• {"age": null} = the value NULL (like in SQL)
• {"age": missing} = { } = really missing

SELECT x.b FROM [{"a":1, "b":2}, {"a":3}] AS x;

SELECT x.b
FROM [{"a":1, "b":2}, {"a":3, "b":missing }] AS x;

SELECT x.b
FROM [{"a":1, "b":2}, {"a":3, "b":null }] AS x;

{"b": 2}
{  }

{"b": 2}
{"b": null  }

{"b": 2}
{ }

Answer

Answer

Answer



Finally, a language that we can use!
SELECT x.age
FROM Person AS x
WHERE x.age > 21
GROUP BY x.gender
HAVING x.salary > 10000
ORDER BY x.name;

FROM Person AS x
WHERE x.age > 21
GROUP BY x.gender
HAVING x.salary > 10000
SELECT x.age
ORDER BY x.name;

is exactly the same as

FWGHOS
lives!!



Introduction to Data Management
CSE 344

Lecture 13: SQL++

CSE 414 - 2019sp 65



Announcements

• HW3 is due tonight!

• Midterm next Friday
– Cover material up to date

• HW4 due next Friday

CSE 414 - 2019sp 66



Review – Big Picture

• NoSQL -> Document Store -> JSON

CSE 414 - 2019sp 67

NoSQL

Key-Value
Store

Document
Store

Extensible
Records

JSON
SQL++



SQL++ Overview

• Data Definition Language: create a
– Type
– Dataset (like a relation)
– Dataverse (a collection of datasets)
– Index: for speeding up query execution

• Data Manipulation Language: 
SELECT-FROM-WHERE

CSE 414 - 2019sp 68



Dataverse
A Dataverse is a Database 
(i.e., collection of tables)

CREATE DATAVERSE myDB
CREATE DATAVERSE myDB IF NOT EXISTS

DROP DATAVERSE myDB
DROP DATAVERSE myDB IF EXISTS

USE myDB
69



Type

• Defines the schema of a collection
• It lists all required fields
• Fields followed by ? are optional

• CLOSED type = no other fields allowed
• OPEN type = other fields allowed

CSE 414 - 2019sp 70



Closed Types

71

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

name: string,
age: int,
email: string?

}

{"name": "Alice", "age": 30, "email": "a@alice.com"}

{"name": "Bob", "age": 40}

-- not OK:
{"name": "Carol", "phone": "123456789"}



Open Types

72

{"name": "Alice", "age": 30, "email": "a@alice.com"}

{"name": "Bob", "age": 40}

-- now it’s OK:
{"name": "Carol","age":20, "phone": "123456789"}

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS OPEN {

name: string,
age: int,
email: string?

}



Types with Nested Collections

73

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

Name : string,
phone: [string]

}

{"Name": "Carol", "phone": ["1234”]}
{"Name": "David", "phone": [“2345”, “6789”]}
{"Name": "Evan", "phone": []}



Types within Types

74

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

Name : string,
contact: [ContactType]

}

{"Name": "Carol", "contact": [
{"Method": "phone", "Address": "1234"},
{"Method": "email", "Address": "carol@uw.edu"}

]}

USE myDB;
DROP TYPE ContactType IF EXISTS;
CREATE TYPE ContactType AS CLOSED {

Method : string,
Address: string

}



Datasets

Dataset = relation/table

• Must have a type
– Can be a trivial OPEN type

• Must have a key
– Can also be a trivial one

CSE 414 - 2019sp 75



Dataset with Existing Key

CSE 414 - 2019sp 76

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

name: string,
email: string?

}

USE myDB;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType) PRIMARY KEY Name;

{“name”: “Alice”}
{“name”: “Bob”}
…

Set of 
PersonType objects!



Dataset with Auto Generated Key

CSE 414 - 2019sp 77

USE myDB;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {

myKey: uuid,
Name : string,
email: string?

}

USE myDB;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType)

PRIMARY KEY myKey AUTOGENERATED;

Note: no myKey
inserted as it is
autogenerated

{“name”: “Alice”}
{“name”: “Bob”}
…



JSON is no longer 1NF
• NFNF = Non First Normal Form

• One or more attributes contain a collection

• One extreme: a single row with a huge, 
nested collection (HW5 mondial.adm)

• Better: multiple rows, reduced number of 
nested collections

CSE 414 - 2019sp 78



Example from HW5

country continent organization sea ... mountain desert

[{“name”:”Albania”,...},
{“name”:”Greece”,...},
...]

... ... ... ... ...

mondial.adm is totally semi-structured:
{“mondial”: {“country”: [...], “continent”:[...], ..., “desert”:[...]}}

country.adm, sea.adm, mountain.adm are more structured
Country:

-car_code name ... ethnicgroups religions ... city

AL Albania ... [ ... ] [ ... ] ... [ ... ]

GR Greece ... [ ... ] [ ... ] ... [ ... ]

... ... ... ...

Nested objects!



Indexes
• A way to access our data (efficiently)

• Can declare an index on an top-level type 
attribute, i.e. the type used by the dataset

• Will discuss how they work later in the quarter 
(used to speed up queries)

CSE 414 - 2019sp 80



Indexes
BTREE: good for equality and range queries
E.g., name=“Greece”;   20 < age and age < 40

RTREE: good for 2-dimensional range queries
E.g., 20 < x and x < 40 and 10 < y and y < 50

CSE 414 - 2019sp 81



Indexes

KEYWORD: good for substring search if your 
dataset contains strings

CSE 414 - 2019sp 82



Indexes
USE myDB;
CREATE INDEX countryID

ON country(`-car_code`)
TYPE BTREE;

Country:

-car_code name ... ethnicgroups religions ... city

AL Albania ... [ ... ] [ ... ] ... [ ... ]

GR Greece ... [ ... ] [ ... ] ... [ ... ]

... ... ... ...

BG Belgium ...

...

AL BG GR... NZ

USE myDB;
CREATE INDEX cityname

ON country(city.name)
TYPE BTREE;

Cannot index inside
a nested collection



AsterixDB Data Model Recap

CSE 414 - 2019sp 84

...
dataset ...

index

types

dataverse
AsterixDB



SQL++ Overview

CSE 414 - 2019sp 85

SELECT ... 
FROM ... 
WHERE ... 
GROUP BY ...
HAVING ...
ORDER BY ...



Retrieve Everything

CSE 414 - 2019sp 86

{“mondial”:
{“country”: [ {Albania}, {Greece}, …],
“continent”: […],
“organization”: […],

...

...
}

}

{{ {“mondial”:
{“country”: [{Albania}, {Greece}, …],
“continent”: […],
“organization”: […],
...
...

}
}

}}

SELECT x.mondial FROM world AS x;

Answer

world

A collection of objects

1. Bind each object 
in world to x

2. Return mondial for each x



Retrieve Everything

CSE 414 - 2019sp 87

{“ans”:
{“country”: [{Albania}, {Greece}, …],
“continent”: […],
“organization”: […],

...

...
}

}

SELECT x.mondial AS ans FROM world AS x;

Answer

world
{{ {“mondial”:

{“country”: [{Albania}, {Greece}, …],
“continent”: […],
“organization”: […],
...
...

}
}

}}



Retrieve countries

CSE 414 - 2019sp 88

{“country”: [{Albania}, {Greece}, …]}Answer

SELECT x.mondial.country FROM world AS x;

world
{{ {“mondial”:

{“country”: [{Albania}, {Greece}, …],
“continent”: […],
“organization”: […],
...
...

}
}

}}



Find each 
country’s GDP

CSE 414 - 2019sp 89

SELECT x.mondial.country.name, c.gdp_total
FROM world AS x, country AS c 
WHERE x.mondial.country.`-car_code` = c.`-car_code`;

world
{{ {“mondial”:

{“country”: 
[{“-car_code”:"AL”, …}
{“name”:”Albania”}, …
], ...

}, ...
}}

{{ { “-car_code”:“AL”,
“gdp_total”:4100,
...

}, ...
}}

country

“-car_code” is an illegal field name
Escape using ` ... `



Find each 
country’s GDP

CSE 414 - 2019sp 90

Error: Type mismatch!

SELECT x.mondial.country.name, c.gdp_total
FROM world AS x, country AS c 
WHERE x.mondial.country.`-car_code` = c.`-car_code`;

world
{{ {“mondial”:

{“country”: 
[{“-car_code”:"AL”, …}
{“name”:”Albania”}, …
], ...

}, ...
}}

{{ { “-car_code”:“AL”,
“gdp_total”:4100,
...

}, ...
}}

country

x.mondial.country is an array
of objects. No field as -car_code! Need to 

“unnest” 
the array



Unnesting collections

CSE 414 - 2019sp 91

SELECT x.A, y.C, y.D
FROM mydata AS x, x.B AS y;

{"A": "a1",   "B": [{"C": "c1", "D": "d1"}, {"C": "c2",  "D": "d2"} ]}
{"A": "a2",   "B": [{"C": "c3", "D": "d3"}] }
{"A": "a3",   "B": [{"C": "c4", "D": "d4"}, {"C": "c5",  "D": "d5"} ]}
{"A": "a4"}

Iterate over each x
and bind each object in x.B to y

mydata



Unnesting collections

CSE 414 - 2019sp 92

SELECT x.A, y.C, y.D
FROM mydata AS x, x.B AS y;

{"A": "a1",   "B": [{"C": "c1", "D": "d1"}, {"C": "c2",  "D": "d2"} ]}
{"A": "a2",   "B": [{"C": "c3", "D": "d3"}] }
{"A": "a3",   "B": [{"C": "c4", "D": "d4"}, {"C": "c5",  "D": "d5"} ]}
{"A": "a4"}

mydata

{"A": "a1", "C": "c1", "D": "d1"}
{"A": "a1", "C": "c2", "D": "d2"}
{"A": "a2", "C": "c3", "D": "d3"}
{"A": "a3", "C": "c4", "D": "d4"}
{"A": "a3", "C": "c5", "D": "d5"}

Answer

Form cross product between
each x and its x.B



Unnesting collections

CSE 414 - 2019sp 93

SELECT x.A, y.C, y.D
FROM mydata AS x UNNEST x.B AS y;

{"A": "a1",   "B": [{"C": "c1", "D": "d1"}, {"C": "c2",  "D": "d2"} ]}
{"A": "a2",   "B": [{"C": "c3", "D": "d3"}] }
{"A": "a3",   "B": [{"C": "c4", "D": "d4"}, {"C": "c5",  "D": "d5"} ]}

Same as before

mydata

Answer
{"A": "a1", "C": "c1", "D": "d1"}
{"A": "a1", "C": "c2", "D": "d2"}
{"A": "a2", "C": "c3", "D": "d3"}
{"A": "a3", "C": "c4", "D": "d4"}
{"A": "a3", "C": "c5", "D": "d5"}



Find each 
country’s GDP

CSE 414 - 2019sp 94

SELECT y.name, c.gdp_total
FROM world AS x, x.mondial.country AS y, country AS c 
WHERE y.`-car_code` = c.`-car_code`;

world
{{ {“mondial”:

{“country”: 
[{“-car_code”:"AL”, …}
{“name”:”Albania”}, …
], ...

}, ...
}}

{{ { “-car_code”:“AL”,
“gdp_total”:4100,
...

}, ...
}}

country

{ "name": "Albania", "gdp_total": "4100" }
{ "name": "Greece", "gdp_total": "101700" }
...

Answer



In General

CSE 414 - Spring 18 95

SELECT ...
FROM R AS x, S AS y
WHERE x.f1 = y.f2;

Needs to be an array
or multiset

(i.e., iterable)

Need to 
“unnest” 
the array

These cannot evaluate to an array or dataset!These cannot evaluate to an array or dataset!



{{ {“mondial”:
{“country”: [{Albania}, {Greece}, …],
“continent”: […],
“organization”: […],
...
...

}
}

}}

Return province
and city names

96

“name”: “Greece”,
“province”: [ ...

{“name”: "Attiki”,
“city”: [ {“name”: ”Athens”...}, {“name”: ”Pireus”...}, ...]
...},
{“name”: ”Ipiros”,
“city”: {“name”: ”Ioannia”...}
...}, ...

The problem:

city is an array

city is an object

world

Error: Type mismatch!

SELECT z.name AS province_name, u.name AS city_name
FROM world x, x.mondial.country y, y.province z, z.city u 
WHERE y.name="Greece";

(each country may have many
provinces and cities)



“name”: “Greece”,
“province”: [ ...

{“name”: "Attiki”,
“city”: [ {“name”: ”Athens”...}, {“name”: ”Pireus”...}, ...]
...},
{“name”: ”Ipiros”,
“city”: {“name”: ”Ioannia”...}
...}, ...

{{ {“mondial”:
{“country”: [{Albania}, {Greece}, …],
“continent”: […],
“organization”: […],
...
...

}
}

}}

Return province
and city names

97

The problem:

SELECT z.name AS province_name, u.name AS city_name
FROM world x, x.mondial.country y, y.province z, z.city u 
WHERE y.name="Greece" AND IS_ARRAY(z.city);

city is an array

city is an object

world



“name”: “Greece”,
“province”: [ ...

{“name”: "Attiki”,
“city”: [ {“name”: ”Athens”...}, {“name”: ”Pireus”...}, ...]
...},
{“name”: ”Ipiros”,
“city”: {“name”: ”Ioannia”...}
...}, ...

{{ {“mondial”:
{“country”: [{Albania}, {Greece}, …],
“continent”: […],
“organization”: […],
...
...

}
}

}}

Return province
and city names

98

The problem:

city is an array

city is an object

world

Note: get name
directly from z

SELECT z.name AS province_name, z.city AS city_name
FROM world x, x.mondial.country y, y.province z
WHERE y.name="Greece" AND NOT IS_ARRAY(z.city);



Return province
and city names

99

SELECT z.name AS province_name, u.name AS city_name

FROM world x, x.mondial.country AS y, y.province AS z,

(CASE WHEN IS_ARRAY(z.city) THEN z.city
ELSE [z.city] END) AS u 

WHERE y.name="Greece";

Get both!

{{ {“mondial”:
{“country”: [{Albania}, {Greece}, …],
“continent”: […],
“organization”: […],
...
...

}
}

}}

world



Return province
and city names

100

SELECT z.name AS province_name, u.name AS city_name
FROM world x, x.mondial.country y, y.province z,

(CASE WHEN z.city IS missing THEN []
WHEN IS_ARRAY(z.city) THEN z.city
ELSE [z.city] END) AS u

WHERE y.name="Greece";

Even better

{{ {“mondial”:
{“country”: [{Albania}, {Greece}, …],
“continent”: […],
“organization”: […],
...
...

}
}

}}

world



Useful Functions

• is_array
• is_boolean
• is_number
• is_object
• is_string
• is_null
• is_missing
• is_unknown = is_null or is_missing

CSE 414 - 2019sp 101



Useful Paradigms

• Unnesting
• Nesting
• Grouping and aggregate
• Joins
• Splitting
• SQL++ ⇨ SQL

– Semistructured ⇨ Relational

CSE 414 - 2019sp 102



Basic Unnesting

• An array:  [a, b, c]
• A nested array: arr = [[a, b], [], [b, c, d]]
• Unnest(arr) = [a, b, b, c, d]

CSE 414 - 2019sp 103

SELECT y
FROM arr x, x y



Unnesting Specific Field

104

A nested collection 
coll =
[{A:a1, F: [{B:b1}, {B:b2}], G: [{C:c1}]}, 
{A:a2, F: [{B:b3}, {B:b4}, {B:b5}], G: [ ]},
{A:a3, F: [{B:b6}], G: [{C:c2},{C:c3}]}]



Unnesting Specific Field

105

A nested collection 

UnnestF(coll) =
[{A:a1, B:b1, G:[{C:c1}]}, 
{A:a1, B:b2, G:[{C:c1}]},
{A:a2, B:b3, G:[]},
{A:a2, B:b4, G:[]},
{A:a2, B:b5, G:[]},
{A:a3, B:b6, G:[{C:c2},{C:c3}]}]

coll =
[{A:a1, F: [{B:b1}, {B:b2}], G: [{C:c1}]}, 
{A:a2, F: [{B:b3}, {B:b4}, {B:b5}], G: [ ]},
{A:a3, F: [{B:b6}], G: [{C:c2},{C:c3}]}]

Nested Relational Algebra



Unnesting Specific Field

106

SELECT x.A, y.B, x.G
FROM coll x, x.F y

A nested collection 

UnnestF(coll) =
[{A:a1, B:b1, G:[{C:c1}]}, 
{A:a1, B:b2, G:[{C:c1}]},
{A:a2, B:b3, G:[]},
{A:a2, B:b4, G:[]},
{A:a2, B:b5, G:[]},
{A:a3, B:b6, G:[{C:c2},{C:c3}]}]

coll =
[{A:a1, F: [{B:b1}, {B:b2}], G: [{C:c1}]}, 
{A:a2, F: [{B:b3}, {B:b4}, {B:b5}], G: [ ]},
{A:a3, F: [{B:b6}], G: [{C:c2},{C:c3}]}]

Nested Relational Algebra



Unnesting Specific Field

107

SELECT x.A, y.B, x.G
FROM coll x, x.F y

A nested collection 

SELECT x.A, y.B, x.G
FROM coll x
UNNEST x.F y

=

UnnestF(coll) =
[{A:a1, B:b1, G:[{C:c1}]}, 
{A:a1, B:b2, G:[{C:c1}]},
{A:a2, B:b3, G:[]},
{A:a2, B:b4, G:[]},
{A:a2, B:b5, G:[]},
{A:a3, B:b6, G:[{C:c2},{C:c3}]}]

coll =
[{A:a1, F: [{B:b1}, {B:b2}], G: [{C:c1}]}, 
{A:a2, F: [{B:b3}, {B:b4}, {B:b5}], G: [ ]},
{A:a3, F: [{B:b6}], G: [{C:c2},{C:c3}]}]

Nested Relational Algebra



Unnesting Specific Field

108

SELECT x.A, y.B, x.G
FROM coll x, x.F y

A nested collection 

UnnestF(coll) =
[{A:a1, B:b1, G:[{C:c1}]}, 
{A:a1, B:b2, G:[{C:c1}]},
{A:a2, B:b3, G:[]},
{A:a2, B:b4, G:[]},
{A:a2, B:b5, G:[]},
{A:a3, B:b6, G:[{C:c2},{C:c3}]}]

UnnestG(coll) =
[{A:a1, F:[{B:b1},{B:b2}], C:c1},
{A:a3, F:[{B:b6}], C:c2},
{A:a3, F:[{B:b6}], C:c3]}

coll =
[{A:a1, F: [{B:b1}, {B:b2}], G: [{C:c1}]}, 
{A:a2, F: [{B:b3}, {B:b4}, {B:b5}], G: [ ]},
{A:a3, F: [{B:b6}], G: [{C:c2},{C:c3}]}]

Nested Relational Algebra



Unnesting Specific Field

109

UnnestF(coll) =
[{A:a1, B:b1, G:[{C:c1}]}, 
{A:a1, B:b2, G:[{C:c1}]},
{A:a2, B:b3, G:[]},
{A:a2, B:b4, G:[]},
{A:a2, B:b5, G:[]},
{A:a3, B:b6, G:[{C:c2},{C:c3}]}]

UnnestG(coll) =
[{A:a1, F:[{B:b1},{B:b2}], C:c1},
{A:a3, F:[{B:b6}], C:c2},
{A:a3, F:[{B:b6}], C:c3]}

SELECT x.A, y.B, x.G
FROM coll x, x.F y

SELECT x.A, x.F, z.C
FROM coll x, x.G z

coll =
[{A:a1, F: [{B:b1}, {B:b2}], G: [{C:c1}]}, 
{A:a2, F: [{B:b3}, {B:b4}, {B:b5}], G: [ ]},
{A:a3, F: [{B:b6}], G: [{C:c2},{C:c3}]}]

A nested collection 

Nested Relational Algebra



Nesting

CSE 414 - 2019sp 110

[{A:a1, B:b1},
{A:a1, B:b2}, 
{A:a2, B:b1}]

C

SELECT DISTINCT x.A, 
(SELECT y.B FROM C AS y WHERE x.A = y.A) AS Grp

FROM C AS x

SELECT DISTINCT x.A, g AS Grp
FROM C AS x
LET g = (SELECT y.B FROM C AS y WHERE x.A = y.A)

[{A:a1, Grp:[{b1, b2}]},
{A:a2, Grp:[{b1}]}]

We want:

Using LET syntax:



Nesting (like group-by)

CSE 414 - 2019sp 111

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection 



Nesting (like group-by)

CSE 414 - 2019sp 112

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection 

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
[{A:a2, GRP:[{B:b2}]}]

Nested Relational Algebra



Nesting (like group-by)

CSE 414 - 2019sp 113

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection 

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
[{A:a2, GRP:[{B:b2}]}]

NestB(coll) =
[{B:b1, GRP:[{A:a1},{A:a2}]},
{B:b2, GRP:[{A:a1}]}]

Nested Relational Algebra



Nesting (like group-by)

CSE 414 - 2019sp 114

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection 

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
[{A:a2, GRP:[{B:b2}]}]

NestB(coll) =
[{B:b1, GRP:[{A:a1},{A:a2}]},
{B:b2, GRP:[{A:a1}]}]

SELECT DISTINCT x.A, 
(SELECT y.B FROM coll y WHERE x.A = y.A) as GRP

FROM coll x

Nested Relational Algebra



Nesting (like group-by)

CSE 414 - 2019sp 115

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection 

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
[{A:a2, GRP:[{B:b2}]}]

NestB(coll) =
[{B:b1, GRP:[{A:a1},{A:a2}]},
{B:b2, GRP:[{A:a1}]}]

SELECT DISTINCT x.A, 
(SELECT y.B FROM coll y WHERE x.A = y.A) as GRP

FROM coll x

SELECT DISTINCT x.A, g as GRP
FROM coll x
LET g =  (SELECT y.B FROM coll y WHERE x.A = y.A)

Nested Relational Algebra



Grouping and Aggregates

CSE 414 - 2019sp 116

Count the number of elements in the F array for each A

[{A:a1, F:[{B:b1}, {B:b2}], G:[{C:c1}]}, 
{A:a2, F:[{B:b3}, {B:b4}, {B:null}], G:[ ]},
{A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

C

SELECT x.A, strict_count(x.F) AS cnt
FROM C AS x

SELECT x.A, COUNT(*) AS cnt
FROM C AS x, x.F AS y
GROUP BY x.A

These are 
NOT 

equivalent!
(why?)



Grouping and Aggregates



Joins

CSE 414 - 2019sp 118

coll1 = [{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]
coll2 = [{B:b1, C:c1}, {B:b1, C:c2}, {B:b3, C:c3}]

Two flat collection 

SELECT x.A, x.B, y.C
FROM coll1 AS x, coll2 AS y
WHERE x.B = y.B

SELECT x.A, x.B, y.C
FROM coll1 AS x JOIN coll2 AS y ON x.B = y.B

[{A:a1, B:b1, C:c1}, 
{A:a1, B:b1, C:c2},
{A:a2, B:b1, C:c1},
{A:a2, B:b1, C:c2}]

Answer



Outer Joins

CSE 414 - 2019sp 119

[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

Two flat collection 

SELECT x.A, x.B, y.C
FROM coll1 AS x LEFT OUTER JOIN coll2 AS y

ON x.B = y.B

[{A:a1, B:b1, C:c1}, 
{A:a1, B:b1, C:c2},
{A:a2, B:b1, C:c1},
{A:a2, B:b1, C:c2},
{A:a1, B:b2}]

Answer

[{B:b1, C:c1}, {B:b1, C:c2}, {B:b3, C:c3}]

coll1

coll2



Ordering

120

[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

SELECT x.A, x.B
FROM coll AS x
ORDER BY x.A

coll1

Data type matters!

"90" > "8000" but 
90 < 8000 !



Splitting

• Recall: a many-to-one relation should have 
one foreign key, from “many” to “one”

• Sometimes people represent it in the 
opposite direction, from “one” to “many”:
– The reference is a string of keys separated by 

space
– Need to use split(string, separator) to split it into a 

collection of foreign keys

CSE 414 - 2019sp 121



Splitting

CSE 414 - 2019sp 122

SELECT y.name, z, x.gdp_total
FROM country AS x, river AS y,

split(y. `-country`, " ") AS z
WHERE x.`-car_code` = z

split("MEX USA", " ") = ["MEX", "USA"]

String Separator

[{"name": "Donau", "-country": "SRB A D H HR SK BG AL MD UA”},
{"name": "Colorado”, "-country": "MEX USA"},
... ]

A collection

river

{{ { “-car_code”:“AL”,
“gdp_total”:4100,
...

}, ...
}}

country



Splitting

CSE 414 - 2019sp 123

SELECT y.name, z, x.gdp_total
FROM country AS x, river AS y,

split(y. `-country`, " ") AS z
WHERE x.`-car_code` = z

[{"name": "Donau", "gdp_total": 4100, "z": "AL"},
... ]

[{"name": "Donau", "-country": "SRB A D H HR SK BG AL MD UA”},
{"name": "Colorado”, "-country": "MEX USA"},
... ]

river

{{ { “-car_code”:“AL”,
“gdp_total”:4100,
...

}, ...
}}

country



Behind the Scenes
i.e., "How to execute SQL++ queries internally?"

Query Processing on NFNF data:
• Option 1: give up on query plans, use 

standard java/python-like execution

• Option 2: represent the data as a collection of 
flat tables, convert SQL++ to a standard 
relational query plan

CSE 414 - 2019sp 124

Is it possible to (1) store nested data in flat relational form
and (2) run standard relational queries over it?



Flattening SQL++ Queries

125

A nested collection 

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:b1}]}, 
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[ ]},
{A:a1, F:[{B:b6}], G:[{C:b2},{C:b3}]}]



126

A nested collection Relational representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

G

parent C

1 b1

3 b2

3 b3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:b1}]}, 
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[ ]},
{A:a1, F:[{B:b6}], G:[{C:b2},{C:b3}]}]

Flattening SQL++ Queries



127

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = “a1”

A nested collection 

SQL++

Relational representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

Flattening SQL++ Queries

G

parent C

1 b1

3 b2

3 b3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:b1}]}, 
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[ ]},
{A:a1, F:[{B:b6}], G:[{C:b2},{C:b3}]}]



128

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = “a1”

A nested collection 

SQL++

Relational representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

Flattening SQL++ Queries

Answer:

A B

a1 b1

a1 b2

a1 b6

G

parent C

1 b1

3 b2

3 b3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:b1}]}, 
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[ ]},
{A:a1, F:[{B:b6}], G:[{C:b2},{C:b3}]}]



129

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = “a1”

SELECT x.A, y.B
FROM coll AS x, F AS y
WHERE x.id = y.parent AND x.A = “a1”

A nested collection 

SQL++

Relational representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

SQL

Flattening SQL++ Queries

Answer:

A B

a1 b1

a1 b2

a1 b6

G

parent C

1 b1

3 b2

3 b3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:b1}]}, 
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[ ]},
{A:a1, F:[{B:b6}], G:[{C:b2},{C:b3}]}]



130

A nested collection 

SQL++

Relational representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

SQL

SELECT x.A, y.B
FROM coll x, x.F y, x.G z
WHERE y.B = z.C

Flattening SQL++ Queries

G

parent C

1 b1

3 b2

3 b3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:b1}]}, 
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[ ]},
{A:a1, F:[{B:b6}], G:[{C:b2},{C:b3}]}]



131

A nested collection 

SQL++

Relational representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

SQL

SELECT x.A, y.B
FROM coll x, x.F y, x.G z
WHERE y.B = z.C

Flattening SQL++ Queries

Answer:

A B

a1 b1

G

parent C

1 b1

3 b2

3 b3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:b1}]}, 
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[ ]},
{A:a1, F:[{B:b6}], G:[{C:b2},{C:b3}]}]



132

A nested collection 

SQL++

Relational representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

SQL

SELECT x.A, y.B
FROM coll x, F y, G z
WHERE x.id = y.parent

AND x.id = z.parent
AND y.B = z.C

Flattening SQL++ Queries

G

parent C

1 b1

3 b2

3 b3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:b1}]}, 
{A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[ ]},
{A:a1, F:[{B:b6}], G:[{C:b2},{C:b3}]}]

SELECT x.A, y.B
FROM coll x, x.F y, x.G z
WHERE y.B = z.C

Answer:

A B

a1 b1



Semistructured Data Model

• Several file formats: JSON, protobuf, XML
• Data model = Tree
• Differ in how they handle structure:

– Open or closed
– Ordered or unordered

• Query language take NFNF into account
– Various “extra” constructs introduced as a result

• Nesting & Unnesting, strict aggregates, splitting

CSE 414 - 2019sp 133



Conclusion
Semi-structured data: best for data exchange

“General” guidelines:
• For quick, ad-hoc data analysis, query it 

directly in the native format (Json/SQL++)
• Modern, advanced query processors like 

AsterixDB can process semi-structured data 
as efficiently as RDBMS

• For long term data analysis: spend the time 
and effort to normalize it, then store in a 
RDBMS

CSE 414 - 2019sp 134


