CSE 4I7
 Algorithms
 Winter 2007

Huffman Codes:
 An Optimal Data Compression
 Method

Compression Example

100k file, 6 letter alphabet:
File Size:
ASCII, 8 bits/char: 800kbits
$2^{3}>6 ; 3$ bits/char: 300kbits

Why?
Storage, transmission vs IGhz cpu

Compression Example

100k file, 6 letter alphabet:
File Size:
ASCII, 8 bits/char: 800kbits
$2^{3}>6$; 3 bits/char: 300 kbits
better:
2.52 bits/char $74 \% * 2+26 \% * 4$: 252 kbits Optimal?
| | $0\left|\left|\mid 0=\right.\right.$ cf or ec? ${ }_{3}$

Data Compression

Binary character code ("code")
each k-bit source string maps to unique code word (e.g. k=8)
"compression" alg: concatenate code words for successive k-bit "characters" of source
Fixed/variable length codes all code words equal length?
Prefix codes
no code word is prefix of another (unique decoding)

Prefix Codes $=$ Trees

a	45%
b	13%
c	12%
d	16%
e	9%
f	5%

Greedy Idea \#|

Put most frequent under root, then recurse ...

Greedy ldea \#1

Put most frequent under root, then recurse

Too greedy:

 unbalanced tree$.45 * 1+.16 * 2+.13 * 3 \ldots=2.34$ not too bad, but imagine if all freqs were $\sim 1 / 6$:
$(1+2+3+4+5+5) / 6=3.33$

Greedy Idea \#2

Divide letters : n to 2 sroups, with ~50\% welght in each; recurse
(Shannon-Fano code)
Again, not terrible
$2 * .5+3^{*} .5=2.5$
But this tree can easily be improved! (How?)

Greedy idea \#3

Group least frequent letters near bottom

(a) e:5 e:9 c:12 b:13 a:16 a:45

(c)

(d)

(c) $2: 45$

(f)

Huffman's Algorithm (1952)

Algorithm:

```
insert node for each letter into priority queue by freq
while queue length > I do
    remove smallest 2; call them x, y
    make new node z from them, with f(z)=f(x) + f(y)
    insert z into queue
```

Analysis: $O(n)$ heap ops: $O(n \log n)$
Goal: Minimize $\quad B(T)=\sum_{\mathrm{c} \in \mathrm{C}} \mathrm{freq}(\mathrm{c}) * \operatorname{depth}(\mathrm{c})$
Correctness: ???

Correctness Strategy

Optimal solution may not be unique, so cannot prove that greedy gives the only possible answer.

Instead, show that greedy's solution is as good as any.

Defn: A pair of leaves is an inversion if depth $(x) \geq \operatorname{depth}(y)$
and

$$
\text { freq }(x) \geq \text { freq }(y)
$$

Claim: If we flip an inversion, cost never increases.
Why? All other things being equal, better to give more frequent letter the shorter code.

before

after

$$
\begin{aligned}
& (\mathrm{d}(\mathrm{x}) * \mathrm{f}(\mathrm{x})+\mathrm{d}(\mathrm{y}) * \mathrm{f}(\mathrm{y}))-(\mathrm{d}(\mathrm{x}) * \mathrm{f}(\mathrm{y})+\mathrm{d}(\mathrm{y}) * \mathrm{f}(\mathrm{x}))= \\
& (\mathrm{d}(\mathrm{x})-\mathrm{d}(\mathrm{y})) *(\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})) \geq 0
\end{aligned}
$$

l.e. non-negative cost savings.

Lemma I:
 "Greedy Choice Property"

The 2 least frequent letters might as well be siblings at deepest level

Let a be least freq, b $2^{\text {nd }}$
Let u, v be siblings at max depth, $\mathrm{f}(\mathrm{u}) \leq \mathrm{f}(\mathrm{v})$ (why must they exist?)
Then (a, u) and (b, v) are inversions. Swap them.

Lemma 2

Let (C, f) be a problem instance: C an n-letter alphabet with letter frequencies $f(c)$ for c in C.
For any x, y in C, let C' be the ($n-I$) letter alphabet
$C-\{x, y\} \cup\{z\}$ and for all c in C' define

$$
f^{\prime}(c)= \begin{cases}f(c), & \text { if } c \neq x, y, z \\ f(x)+f(y), & \text { if } c=z\end{cases}
$$

Let T' be an optimal tree for ($\left.\mathrm{C}^{\prime}, \mathrm{f}\right)$.
Then

is optimal for (C, f) among all trees having x, y as siblings

Proof:

$$
\begin{aligned}
B(T) & =\sum_{c \in C} d_{T}(c) \cdot f(c) \\
B(T)-B\left(T^{\prime}\right) & =d_{T}(x) \cdot(f(x)+f(y))-d_{T^{\prime}}(z) \cdot f^{\prime}(z) \\
& =\left(d_{T^{\prime}}(z)+1\right) \cdot f^{\prime}(z)-d_{T^{\prime}}(z) \cdot f^{\prime}(z) \\
& =f^{\prime}(z)
\end{aligned}
$$

Suppose \hat{T} (having $\times \& \mathrm{y}$ as siblings) is better than T, i.e.
$B(\hat{T})<B(T)$. Collapse $\mathrm{x} \& \mathrm{y}$ to z , forming \hat{T}^{\prime}; as above:

$$
B(\hat{T})-B\left(\hat{T}^{\prime}\right)=f^{\prime}(z)
$$

Then:

$$
B\left(\hat{T}^{\prime}\right)=B(\hat{T})-f^{\prime}(z)<B(T)-f^{\prime}(z)=B\left(T^{\prime}\right)
$$

Contradicting optimality of T ,

Theorem:

Huffman gives optimal codes

Proof: induction on $|\mathrm{C}|$
Basis: $\mathrm{n}=1,2$ - immediate
Induction: $\mathrm{n}>2$
Let x, y be least frequent
Form $C^{\prime}, f^{\prime}, \& z$, as above
By induction, T^{\prime} is opt for (C^{\prime}, f^{\prime})
By lemma $2, \mathrm{~T}^{\prime} \rightarrow \mathrm{T}$ is opt for (C, f) among trees with x, y as siblings
By lemma I, some opt tree has $\underline{x, y}$ as siblings
Therefore, T is optimal.

Data Compression

Huffman is optimal.

BUT still might do better!
Huffman encodes fixed length blocks. What if we vary them?
Huffman uses one encoding throughout a file. What if characteristics change?
What if data has structure? E.g. raster images, video,... Huffman is lossless. Necessary?
LZW, MPEG, ...

David A. Huffman, 1925-1999

