CSE 4I7: Algorithms and Computational Complexity

Winter 2007
W. L. Ruzzo

Dynamic Programming, I
Fibonacci \& Stamps

Dynamic Programming

Outline:

General Principles

Easy Examples - Fibonacci, Licking Stamps

Meatier examples
RNA Structure prediction
Weighted interval scheduling
Maybe others

Some Algorithm Design Techniques, I

General overall idea
Reduce solving a problem to a smaller problem or problems of the same type
Greedy algorithms
Used when one needs to build something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away

> e.g. closest pair in TSP search

Usually fast if they work (but often don't)

Some Algorithm Design Techniques, II

Divide \& Conquer

Reduce problem to one or more sub-problems of the same type
Typically, each sub-problem is at most a constant fraction of the size of the original problem
e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Some Algorithm Design Techniques, III

Dynamic Programming
Give a solution of a problem using smaller subproblems, e.g. a recursive solution
Useful when the same sub-problems show up again and again in the solution

"Dynamic Programming"

Program - A plan or procedure for dealing with some matter

- Webster's New World Dictionary

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

A very simple case: Computing Fibonacci Numbers

Recall $F_{n}=F_{n-1}+F_{n-2}$ and $F_{0}=0, F_{1}=I$
Recursive algorithm:
Fibo(n)
if $\mathrm{n}=0$ then return(0)
else if $n=I$ then return(I)
else return(Fibo(n-I)+Fibo(n-2))

Call tree - start

Full call tree

Memo-ization (Caching)

Remember all values from previous recursive calls

Before recursive call, test to see if value has already been computed
Dynamic Programming
NOT memoized; instead, convert memoized alg from a recursive one to an iterative one (top-down \rightarrow bottom-up)

Fibonacci - Memoized Version

initialize: $F[i] \leftarrow$ undefined for all i
$\mathrm{F}[0] \leftarrow 0$
F $[1] \leftarrow$ I
FiboMemo(n):

```
if(F[n] undefined) {
F[n]}\leftarrow\mathrm{ FiboMemo(n-2)+FiboMemo(n-I)
}
return(F[n])
```


Fibonacci - Dynamic Programming Version

FiboDP(n): $\mathrm{F}[0] \leftarrow 0$
$\mathrm{F}[\mathrm{I}] \leftarrow \mathrm{I} \quad$ For this problem,
for $\mathrm{i}=2$ to n do
$\mathrm{F}[\mathrm{i}] \leftarrow \mathrm{F}[\mathrm{i}-\mathrm{I}]+\mathrm{F}[\mathrm{i}-2]$
endfor
return(F[n]) keeping only last
2 entries instead of full array
suffices, but about the same speed

Dynamic Programming

Useful when

Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated
The solution to whole problem can be solved without knowing the internal details of how the sub-problems are solved
"principle of optimality"

Making change

Given:
Large supply of $1 \not \subset, 5 \not \subset, 10 \not \subset, 25 \not \subset, 50 \not \subset$ coins
An amount N
Problem: choose fewest coins totaling N

Cashier's (greedy) algorithm works:
Give as many as possible of the next biggest denomination

Licking Stamps

Given:
Large supply of $5 申, 4 \not \subset$, and I $\not \subset$ stamps
An amount N
Problem: choose fewest stamps totaling N

How to Lick 27申

\＃of 5申 stamps	\＃of 4 \varnothing stamps	\＃of I申 stamps	total number
5	0	2	7
4	I	3	8
3	3	0	6

Morals：Greed doesn＇t pay；success of＂cashier＇s alg＂depends on coin denominations

A Simple Algorithm

At most N stamps needed, etc.

```
for a = 0, ..,N {
    for b = 0, ...,N {
        for c = 0, ..,N {
        if (5a+4b+c == N && a+b+c is new min)
        {retain (a,b,c);}}}
    output retained triple;
```

Time: $\mathrm{O}\left(\mathrm{N}^{3}\right)$
(Not too hard to see some optimizations, but we're after bigger fish...)

Better Idea

Theorem: If last stamp licked in an optimal solution has value v, then previous stamps form an optimal solution for $\mathrm{N}-\mathrm{v}$.
Proof: if not, we could improve the solution for N by using opt for $\mathrm{N}-\mathrm{v}$.

New Idea: Recursion

Time: $>3^{\text {N/5 }}$

Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems
Top-down: "memoization"
Bottom up:

$$
\text { for } \mathrm{i}=0, \ldots, \mathrm{~N} \text { do } M[i]=\min \left\{\begin{array}{ll}
0 & i=0 \\
1+M[i-5] & i \geq 5 \\
1+M[i+4] & i \geq 4 \\
1+M[i-1] & i \geq 1
\end{array}\right\} ;
$$

Time: $\mathrm{O}(\mathrm{N})$

Finding How Many Stamps

Finding Which Stamps: Trace-Back

Trace-Back

Way I: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what's needed

```
TraceBack(i):
    if i == 0 then return;
    for d in {1, 4, 5} do
        if M[i] == 1 + M[i - d] then break;
    print d;
    TraceBack(i - d);
```


Complexity Note

$\mathrm{O}(\mathrm{N})$ is better than $\mathrm{O}\left(\mathrm{N}^{3}\right)$ or $\mathrm{O}\left(3^{\mathrm{N} / 5}\right)$

But still exponential in input size ($\log \mathrm{N}$ bits)
(E.g., miserable if N is 64 bits $-\mathrm{c} \cdot 2^{64}$ steps \& 2^{64} memory.)

Note: can do in $O(I)$ for $5 \phi, 4 \not \subset$, and $I \not \subset$ but not in general. See "NP-Completeness" later.

Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?
"Optimal Substructure"
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)
"Repeated Subproblems"
The same subproblems arise in various ways

