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Dynamic Programming, I
Fibonacci & Stamps
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Dynamic Programming

Outline:
General Principles
Easy Examples – Fibonacci, Licking Stamps

Meatier examples
RNA Structure prediction

Weighted interval scheduling

Maybe others



3

Some Algorithm Design
Techniques, I

General overall idea
Reduce solving a problem to a smaller problem or
problems of the same type

Greedy algorithms
Used when one needs to build something a piece at a
time
Repeatedly make the greedy choice - the one that looks
the best right away

e.g. closest pair in TSP search

Usually fast if they work (but often don't)
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Some Algorithm Design
Techniques, II

Divide & Conquer
Reduce problem to one or more sub-problems of the
same type

Typically, each sub-problem is at most a constant fraction
of the size of the original problem

e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort
(kind of)
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Some Algorithm Design
Techniques, III

Dynamic Programming
Give a solution of a problem using smaller sub-
problems, e.g. a recursive solution
Useful when the same sub-problems show up
again and again in the solution
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“Dynamic Programming”

Program — A plan or procedure for dealing
with some matter

– Webster’s New World Dictionary
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Dynamic Programming History

Bellman.  Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
 Dynamic programming = planning over time.
 Secretary of Defense was hostile to mathematical research.
 Bellman sought an impressive name to avoid confrontation.

– "it's impossible to use dynamic in a pejorative sense"
– "something not even a Congressman could object to"

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.
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A very simple case:
Computing Fibonacci Numbers

Recall Fn = Fn-1 + Fn-2  and F0 = 0, F1 = 1

Recursive algorithm:
Fibo(n)

if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))
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Full call tree
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Memo-ization (Caching)

Remember all values from previous recursive
calls
Before recursive call, test to see if value has
already been computed

Dynamic Programming
NOT memoized; instead, convert memoized alg
from a recursive one to an iterative one
(top-down → bottom-up)
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Fibonacci - Memoized Version

initialize: F[i] ← undefined for all i
F[0] ← 0
F[1] ← 1

FiboMemo(n):
if(F[n] undefined) {

F[n] ← FiboMemo(n-2)+FiboMemo(n-1)

}

return(F[n])
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Fibonacci - Dynamic
Programming Version

FiboDP(n):
F[0] ← 0
F[1] ← 1
for i=2 to n do
     F[i]  ← F[i-1]+F[i-2]
endfor                                                   
return(F[n])

For this problem,
keeping only last
2 entries instead
of full array
suffices, but about
the same speed
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Dynamic Programming

Useful when
Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated

The solution to whole problem can be solved
without knowing the internal details of how the
sub-problems are solved

“principle of optimality”
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Making change

Given:
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
Give as many as possible of the next biggest 
denomination



16

Licking Stamps

Given:
Large supply of 5¢, 4¢, and 1¢ stamps
An amount N

Problem: choose fewest stamps totaling N
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5 0 2 7

4 1 3 8

3 3 0 6

# of 5¢
stamps

# of 4 ¢
stamps

# of 1¢
stamps

total
number

How to Lick 27¢

 

Morals: Greed doesn’t pay; success of “cashier’s
alg” depends on coin denominations
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A Simple Algorithm

At most N stamps needed, etc.
   for a = 0, …, N {

  for b = 0, …, N {
for c = 0, …, N {

if (5a+4b+c == N && a+b+c is new min)
{retain (a,b,c);}}}

   output retained triple;

Time: O(N3)
(Not too hard to see some optimizations, but we’re after bigger fish…)
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Better Idea

Theorem:  If last stamp licked in an optimal
solution has value v, then previous stamps
form an optimal solution for N-v.
Proof: if not, we could improve the solution
for N by using opt for N-v.
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New Idea: Recursion
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Time:  > 3N/5
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Another New Idea:
Avoid Recomputation

Tabulate values of solved subproblems
Top-down: “memoization”
Bottom up:

for i = 0, …, N do              ;

Time: O(N)
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Finding How Many Stamps

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M(i) 0 1 2 3 1 1 2 3 2       
 

1+Min(3,1,3) = 2



23

Finding Which Stamps:
Trace-Back

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M(i) 0 1 2 3 1 1 2 3 2       
 

1+Min(3,1,3) = 2

4¢
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Trace-Back

Way 1: tabulate all
add data structure storing back-pointers indicating which
predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed
TraceBack(i):

if i == 0 then return;
for d in {1, 4, 5} do

if M[i] == 1 + M[i - d] then break;
print d;
TraceBack(i - d);
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Complexity Note

O(N) is better than O(N3) or O(3N/5)

But still exponential in input size
(log N bits)

(E.g., miserable if N is 64 bits – c•264 steps &  264 memory.)

Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in
general.  See “NP-Completeness” later.
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Elements of Dynamic
Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways


