
1

CSE 417: Algorithms and
Computational Complexity

Winter 2007
W. L. Ruzzo

Dynamic Programming, I
Fibonacci & Stamps

2

Dynamic Programming

Outline:
General Principles
Easy Examples – Fibonacci, Licking Stamps

Meatier examples
RNA Structure prediction

Weighted interval scheduling

Maybe others

3

Some Algorithm Design
Techniques, I

General overall idea
Reduce solving a problem to a smaller problem or
problems of the same type

Greedy algorithms
Used when one needs to build something a piece at a
time
Repeatedly make the greedy choice - the one that looks
the best right away

e.g. closest pair in TSP search

Usually fast if they work (but often don't)

4

Some Algorithm Design
Techniques, II

Divide & Conquer
Reduce problem to one or more sub-problems of the
same type

Typically, each sub-problem is at most a constant fraction
of the size of the original problem

e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort
(kind of)

5

Some Algorithm Design
Techniques, III

Dynamic Programming
Give a solution of a problem using smaller sub-
problems, e.g. a recursive solution
Useful when the same sub-problems show up
again and again in the solution

6

“Dynamic Programming”

Program — A plan or procedure for dealing
with some matter

– Webster’s New World Dictionary

7

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
 Dynamic programming = planning over time.
 Secretary of Defense was hostile to mathematical research.
 Bellman sought an impressive name to avoid confrontation.

– "it's impossible to use dynamic in a pejorative sense"
– "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

8

A very simple case:
Computing Fibonacci Numbers

Recall Fn = Fn-1 + Fn-2 and F0 = 0, F1 = 1

Recursive algorithm:
Fibo(n)

if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))

9

Call tree - start
F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)

10

Full call tree
F (6)

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)F (3)

F (1) F (0)

1 0

F (0)

01

F (1)

F (1) F (0)

1 0F (1)

F (2) F (1)

1
F (0)

1 0

F (2) F (1)

1
F (0)

1 0

F (1)

1

F (1)

11

Memo-ization (Caching)

Remember all values from previous recursive
calls
Before recursive call, test to see if value has
already been computed

Dynamic Programming
NOT memoized; instead, convert memoized alg
from a recursive one to an iterative one
(top-down → bottom-up)

12

Fibonacci - Memoized Version

initialize: F[i] ← undefined for all i
F[0] ← 0
F[1] ← 1

FiboMemo(n):
if(F[n] undefined) {

F[n] ← FiboMemo(n-2)+FiboMemo(n-1)

}

return(F[n])

13

Fibonacci - Dynamic
Programming Version

FiboDP(n):
F[0] ← 0
F[1] ← 1
for i=2 to n do
 F[i] ← F[i-1]+F[i-2]
endfor
return(F[n])

For this problem,
keeping only last
2 entries instead
of full array
suffices, but about
the same speed

14

Dynamic Programming

Useful when
Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated

The solution to whole problem can be solved
without knowing the internal details of how the
sub-problems are solved

“principle of optimality”

15

Making change

Given:
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
Give as many as possible of the next biggest
denomination

16

Licking Stamps

Given:
Large supply of 5¢, 4¢, and 1¢ stamps
An amount N

Problem: choose fewest stamps totaling N

17

5 0 2 7

4 1 3 8

3 3 0 6

of 5¢
stamps

of 4 ¢
stamps

of 1¢
stamps

total
number

How to Lick 27¢

Morals: Greed doesn’t pay; success of “cashier’s
alg” depends on coin denominations

18

A Simple Algorithm

At most N stamps needed, etc.
 for a = 0, …, N {

 for b = 0, …, N {
for c = 0, …, N {

if (5a+4b+c == N && a+b+c is new min)
{retain (a,b,c);}}}

 output retained triple;

Time: O(N3)
(Not too hard to see some optimizations, but we’re after bigger fish…)

19

Better Idea

Theorem: If last stamp licked in an optimal
solution has value v, then previous stamps
form an optimal solution for N-v.
Proof: if not, we could improve the solution
for N by using opt for N-v.

!

M (i) = min

0
1+M (i"5)
1+M (i"4)
1+M (i"1)

i=0
i#5
i#4
i#1

$
%
&

'
(
)

where M(i) = min number
of stamps totaling i¢

20

New Idea: Recursion

!

M (i) = min

0
1+M (i"5)
1+M (i"4)
1+M (i"1)

i=0
i#5
i#4
i#1

$
%
&

'
(
)

27

22 23 26

 17 18 21 18 19 22 21 22 25

Time: > 3N/5

...

21

Another New Idea:
Avoid Recomputation

Tabulate values of solved subproblems
Top-down: “memoization”
Bottom up:

for i = 0, …, N do ;

Time: O(N)
!
"
#

$
%
&

'
'
'
=

(+
(+
(+

=

1
4
5
0

]1[1
]4[1
]5[1

0

 min][

i

i

i

i

iM

iM

iM
iM

22

Finding How Many Stamps

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2

23

Finding Which Stamps:
Trace-Back

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2

4¢

24

Trace-Back

Way 1: tabulate all
add data structure storing back-pointers indicating which
predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed
TraceBack(i):

if i == 0 then return;
for d in {1, 4, 5} do

if M[i] == 1 + M[i - d] then break;
print d;
TraceBack(i - d);

25

Complexity Note

O(N) is better than O(N3) or O(3N/5)

But still exponential in input size
(log N bits)

(E.g., miserable if N is 64 bits – c•264 steps & 264 memory.)

Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in
general. See “NP-Completeness” later.

26

Elements of Dynamic
Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways

