

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

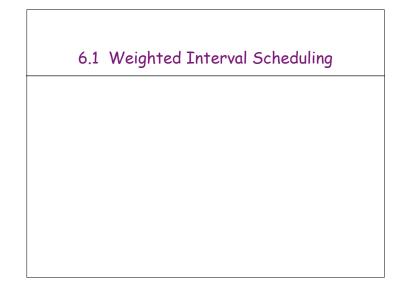
Dynamic Programming Applications

Areas.

- Bioinformatics.
- . Control theory.
- Information theory.
- Operations research.
- . Computer science: theory, graphics, AI, systems,

Some famous dynamic programming algorithms.

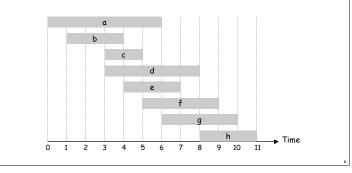
- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- . Cocke-Kasami-Younger for parsing context free grammars.

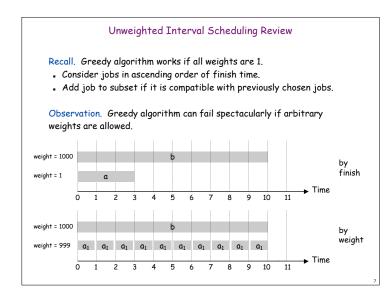


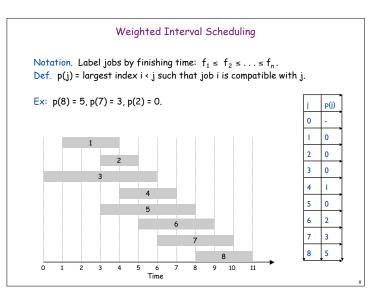
Weighted Interval Scheduling

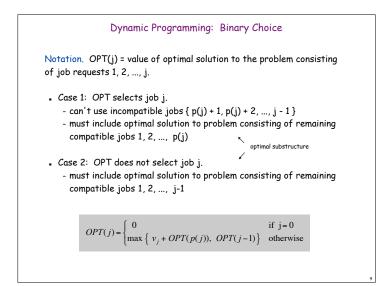
Weighted interval scheduling problem.

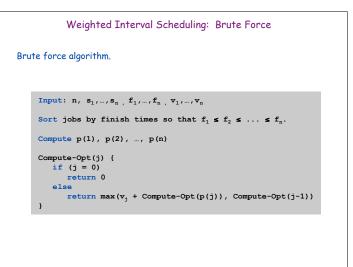
- Job j starts at $\boldsymbol{s}_j,$ finishes at $\boldsymbol{f}_j,$ and has weight or value \boldsymbol{v}_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

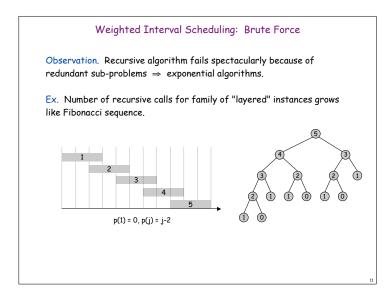












Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

Input: n, s_1, \dots, s_n , f_1, \dots, f_n , v_1, \dots, v_n

```
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n. Compute p(1), p(2), ..., p(n)
```

```
for j = 1 to n

M[j] = empty \leftarrow global array

M[j] = 0
```

```
M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max(w<sub>j</sub> + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```

