Dynamic Programming Examples

Imran Rashid

University of Washington
February 27, 2008

Lecture Outline

1 Weighted Interval Scheduling

Lecture Outline

1 Weighted Interval Scheduling

2 Knapsack Problem

Lecture Outline

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

Lecture Outline

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

Algorithmic Paradigms

■ Greed. Build up a solution incrementally, myopically optimizing some local criterion.
■ Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.
■ Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming Applications

- Areas.
- Bioinformatics.

■ Control theory.

- Information theory.
- Operations research.

■ Computer science: theory, graphics, AI, systems, ...

- Some famous dynamic programming algorithms.

■ Viterbi for hidden Markov models.

- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Outline

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

Weighted Interval Scheduling

■ Weighted interval scheduling problem.
■ Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.

- Two jobs compatible if they don't overlap.

■ Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

■ Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.

■ Add job to subset if it is compatible with previously chosen jobs.

■ Can Greedy work when there are weights?

Unweighted Interval Scheduling Review

■ Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

■ Can Greedy work when there are weights?
■ Greedy fails for ordering either by finish time or by weight

Weighted Interval Scheduling

■ Notation. Label jobs by finishing time: $f_{1}, f_{2}, \ldots f_{n}$.
■ Def. $p(j)=$ largest index $i<j$ such that job i is compatible with j.
■ Ex: $p(8)=5, p(7)=3, p(2)=0$.

Dynamic Programming: Binary Choice

■ Notation. OPT(j) = value of optimal solution to the problem consisting of job requests $1,2, \ldots, j$.

- Case 1: OPT selects job j.

■ can't use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$

- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$
■ Case 2: OPT does not select job j.
■ must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, j-1$

Weighted Interval Scheduling: Brute Force

■ Brute force algorithm.

Input $n, s_{1}, \ldots s_{n}, f_{1}, \ldots f_{n}, v_{1}, \ldots, v_{n}$
Sort jobs by finish times so $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
Compute $p(1), p(2), \ldots, p(n)$
procedure Compute- $\mathrm{OpT}(j)$
if $j=0$ then return 0
else
return max $\left(v_{j}+\operatorname{Compute-} \operatorname{Opt}(p(j))\right.$, Compute-
$\operatorname{Opt}(j-1))$
end if
end procedure

Weighted Interval Scheduling: Brute Force

■ Observation. Recursive algorithm fails spectacularly because of redundant sub-problems exponential algorithms.
■ Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Memoization

Input $n, s_{1}, \ldots s_{n}, f_{1}, \ldots f_{n}, v_{1}, \ldots, v_{n}$
Sort jobs by finish times so $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
Compute $p(1), p(2), \ldots, p(n)$
for $i=1 \ldots n$ do
$M[i] \leftarrow$ empty
end for
$M[0] \leftarrow 0$
procedure $\mathrm{M}-\mathrm{Opt}(j)$
if $M[j]$ is empty then

$$
M[j] \leftarrow \max \left(v_{j}+\operatorname{M-Opt}(p(j)), \operatorname{M-Opt}(j-1)\right)
$$

end if
return $M[j]$
end procedure

Weighted Interval Scheduling: Running Time

- Claim. Memoized version of algorithm takes $O(n \log n)$ time.

■ Sort by finish time: $O(n \log n)$.

- Computing $p(): O(n)$ after sorting by start time.
- M-Opt(j): each invocation takes $O(1)$ time and either

1 returns an existing value $M[j]$
2 fills in one new entry $M[j]$ and makes two recursive calls

- Progress Measure: Θ number of empty cells in M
- $\Theta \leq n$ always

■ max 2 recursive calls at any level $\Rightarrow \leq 2 n$ recursive calls total

- $\operatorname{M-Opt}(n)$ is $O(n)$
- Overall, $O(n \log n)$, or $O(n)$ if presorted by start \& finish times

Weighted Interval Scheduling: Iterative

■ Bottom Up Iteration

Input $n, s_{1}, \ldots s_{n}, f_{1}, \ldots f_{n}, v_{1}, \ldots, v_{n}$
Sort jobs by finish times so $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$
Compute $p(1), p(2), \ldots, p(n)$
procedure Iter-Opt(j)
$M[0] \leftarrow 0$
for $i=1 \ldots n$ do
$M[i] \leftarrow \max \left(v_{i}+M[p(i)], M[i-1]\right)$
end for
return $M[j]$
end procedure

Outline

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

Knapsack Problem

■ Given n objects and a knapsack
■ Object i has weight w_{i} and value v_{i}.
■ Knapsack has maximum weight W
■ Goal: fill knapsack to maximize total value

- Example Instance

■ Knapsack max weight $W=11$.
■ Packing items $\{3,4\}$ gives total value 40.

- Can we use greedy?
- Greedy by value/weight ratio is sub-optimal. In the example, it would pack $\{5,2,1\}$, which only has value 35 .

16 / 29

Knapsack Subproblems: first try

■ Def. $O P T(i)=\max$ value subset of items $1, \ldots$, i.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$

■ Case 2: OPT selects item i.

Knapsack Subproblems: first try

■ Def. $O P T(i)=$ max value subset of items $1, \ldots, i$.
■ Case 1: OPT does not select item i.

- OPT selects best of $\{1,2, \ldots, i-1\}$

■ Case 2: OPT selects item i.
■ accepting item i does not immediately imply that we will have to reject other items.
■ without knowing what other items were selected before i, we don't even know if we have enough room for i

■ Conclusion. Need more sub-problems!

Knapsack Subproblems: second try

■ Def. $\operatorname{OPT}(i, S)=\max$ value subset of items $1, \ldots, i$, using items in the set S.

- Works, but ...

Knapsack Subproblems: second try

■ Def. $\operatorname{OPT}(i, S)=\max$ value subset of items $1, \ldots, i$, using items in the set S.

- Works, but ...

■ ... 2^{n} subproblems! we haven't saved any work

Knapsack Subproblems: second try

■ Def. $\operatorname{OPT}(i, S)=\max$ value subset of items $1, \ldots, i$, using items in the set S.

- Works, but ...

■ ... 2^{n} subproblems! we haven't saved any work
■ Do we really need to know all of items chosen? Just need to know if we can stick in item i ...

Knapsack Subproblems: third time's a charm

■ Only need to know the weight already in the knapsack
■ Def. $\operatorname{OPT}(i, w)=\max$ value subset of items $1, \ldots, i$ weighing no more than w.

- Case 1: OPT does not select item i.

■ OPT selects best of $\{1,2, \ldots, i-1\}$ weighing no more than w.
■ Case 2: OPT selects item i.
■ $w^{\prime}=w-w_{i}$
■ OPT adds item i to optimal solution from $1, \ldots, i-1$ weighing no more than w^{\prime}, the new weight limit.
■ The Reccurence:

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & \text { if } i=0 \\ \operatorname{OPT}(i-1, w) & \text { if } w_{i}>w \\ \max \left(v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right),\right. & \\ \operatorname{OPT}(i-1, w))\end{cases}
$$

Outline

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

String Similarity

\bigcirc	c	u	r	r	a	n	c	e	-
\bigcirc	c	c	u	r	r	e	n	c	e
			mi	ma		, 1			

■ How similar are two strings?
1 ocurrance
2 occurrence

0	c	-	u	r	r	a	n	c	e
0	c	c	u	r	r	e	n	c	e
mismatch, 1 gap									

0	c	-	u	r	r	-	a	n	c	e
\bigcirc	c	c	u	r	r	e	-	n	c	e
			mis	mat		3	gap			

String Edit Distance

- Applications

■ Basis for "diff"

- Speech Recognition
- Computational Biology
- Edit Distance

■ Gap Penalty δ; mismatch-penalty $\alpha_{p q}$
■ Cost $=$ sum of gap and mismatch penalties

C	T	G	A	C	C	T	A	C	C	T	-	C	T	G	A	C	C

Sequence Alignment

■ Goal Given two strings $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ find alignment of minimum cost.
■ Def An alignment M is a set of ordered pairs $\left(x_{i}, y_{j}\right)$ such that each item occurs in at most one pair and no crossings.
■ Def The pair $\left(x_{i}, y_{j}\right)$ and $\left(x_{i^{\prime}}, y_{j^{\prime}}\right)$ cross $f i<i^{\prime}$ but $j>j^{\prime}$.

$$
\operatorname{cost}(M)=\underbrace{\sum_{\left(x_{i}, y_{j}\right) \in M} \alpha_{x_{i}, y_{j}}}_{\text {mismatch }}+\underbrace{\sum_{i: x_{i} \text { unmatched }} \delta+\sum_{j: y_{j} \text { unmatched }} \delta}_{\text {gap }}
$$

Sequence Alignment Subproblems

$■$ Def $O P T(i, j)=m i n$ cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

■ Case 1. OPT matches $\left(x_{i}, y_{j}\right)$. Pay mismatch for $\left(x_{i}, y_{j}\right)$ + min cost aligning substrings $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
■ Case 2a. OPT leaves x_{i} unmatched. Pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$.
■ Case 2b. OPT leaves y_{i} unmatched. Pay gap for y_{i} and \min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$.

Sequence Alignment Subproblems

■ Def $\operatorname{OPT}(i, j)=$ min cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

■ Case 1. OPT matches $\left(x_{i}, y_{j}\right)$. Pay mismatch for $\left(x_{i}, y_{j}\right)$ + min cost aligning substrings $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
■ Case 2a. OPT leaves x_{i} unmatched. Pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$.
■ Case 2b. OPT leaves y_{i} unmatched. Pay gap for y_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$.

$$
O P T(i, j)= \begin{cases}j \delta & \text { if } i=0 \\ i \delta & \text { if } j=0 \\ \min \begin{cases}\alpha_{x_{i}, y_{j}}+\operatorname{OPT}(i-1, j-1) \\ \delta+\operatorname{OPT}(i-1, j) & \text { otherwise } \\ \delta+\operatorname{OPT}(i, j-1)\end{cases} \end{cases}
$$

Sequence Alignment Runtime

■ Runtime: $\Theta(m n)$

- Space: $\Theta(m n)$

■ English words: $m, n \leq 10$

- Biology: $m, n \approx 10^{5}$
- $10^{1} 0$ operations OK ...
- 10 GB array is a problem
- Can cut space down to $O(m+n)$ (see Section 6.7)

Outline

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

Dynamic Programming and TSP(1)

■ Consider this Dyanmic Programming "solution" to the Travelling Salesman Problem

Order the points p_{1}, \ldots, p_{n} arbitrarily. for $i=1, \ldots n$ do
for $j=1, \ldots i$ do
Take optimal solution for points $p_{1}, \ldots p_{i-1}$, and put point p_{i} right after p_{j}.
end for
Keep optimal of all the attempts above.
end for

- The runtime of this algorithm is $\Theta\left(n^{2}\right)$. Is it really this easy?

Dynamic Programming and TSP (2)

■ The runtime of this algorithm is $\Theta\left(n^{2}\right)$. Is it really this easy?

Dynamic Programming and TSP (2)

- The runtime of this algorithm is $\Theta\left(n^{2}\right)$. Is it really this easy?
■ NO. We don't have the "principle of optimality".
■ Why should the optimal solution for points p_{1}, \ldots, p_{i} be based on the optimal solution for p_{1}, \ldots, p_{i-1} ???

Dynamic Programming and TSP (2)

- The runtime of this algorithm is $\Theta\left(n^{2}\right)$. Is it really this easy?
- We have not bothered to prove the optimality for many of the problems we considered, because it is "clear". But be sure to check.

Dynamic Programming and TSP (3)

■ What if we changed the previous algorithm to keep track of all ordering of points p_{1}, \ldots, p_{i} ? The optimal solution for p_{1}, \ldots, p_{i+1} must come from one of those, right?

Dynamic Programming and TSP (3)

■ What if we changed the previous algorithm to keep track of all ordering of points p_{1}, \ldots, p_{i} ? The optimal solution for p_{1}, \ldots, p_{i+1} must come from one of those, right?
■ Sure, that would work.

Dynamic Programming and TSP (3)

■ What if we changed the previous algorithm to keep track of all ordering of points p_{1}, \ldots, p_{i} ? The optimal solution for p_{1}, \ldots, p_{i+1} must come from one of those, right?

■ But now you're doing n ! work.

