Dynamic Programming Examples

Imran Rashid

University of Washington

February 27, 2008

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

1/29

1 Weighted Interval Scheduling

2 Knapsack Problem

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Algorithmic Paradigms

- Greed. Build up a solution incrementally, myopically optimizing some local criterion.
- Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.
- Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems, ...
- Some famous dynamic programming algorithms.
 - Viterbi for hidden Markov models.
 - Unix diff for comparing two files.
 - Smith-Waterman for sequence alignment.
 - Bellman-Ford for shortest path routing in networks.
 - Cocke-Kasami-Younger for parsing context free grammars.

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.
- Can Greedy work when there are weights?

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Can Greedy work when there are weights?

Weighted Interval Scheduling

- Notation. Label jobs by finishing time: $f_1, f_2, \ldots f_n$.
- Def. p(j) = largest index i < j such that job i is compatible with j.

• Ex:
$$p(8) = 5, p(7) = 3, p(2) = 0$$

Dynamic Programming: Binary Choice

- Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.
 - Case 1: OPT selects job j.
 - can't use incompatible jobs $\{p(j) + 1, p(j) + 2, ..., j 1\}$
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)
 - Case 2: OPT does not select job *j*.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j - 1

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input $n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n$ Sort jobs by finish times so $f_1 < f_2 < \ldots < f_n$ Compute p(1), p(2), ..., p(n)**procedure** COMPUTE-OPT(j)if i = 0 then return 0 else return $max(v_i + COMPUTE-OPT(p(j)))$, COMPUTE-OPT(i-1)) end if end procedure

Weighted Interval Scheduling: Brute Force

- Observation. Recursive algorithm fails spectacularly because of redundant sub-problems exponential algorithms.
- Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Memoization

```
Input n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so f_1 < f_2 < \ldots < f_n
Compute p(1), p(2), ..., p(n)
for i = 1 \dots n do
   M[i] \leftarrow \text{empty}
end for
M[0] \leftarrow 0
procedure M-OPT(i)
   if M[i] is empty then
        M[j] \leftarrow max(v_i + M - OPT(p(j)), M - OPT(j-1))
   end if
   return M|i|
end procedure
                                            ▲ロト▲御と▲臣と▲臣と 臣 の
```

Weighted Interval Scheduling: Running Time

- Claim. Memoized version of algorithm takes O(n log n) time.
 - Sort by finish time: $O(n \log n)$.
 - Computing p() : O(n) after sorting by start time.
 - M-OPT(j): each invocation takes O(1) time and either
 - 1 returns an existing value M[j]
 - 2 fills in one new entry M[j] and makes two recursive calls
 - Progress Measure: ⊖ number of empty cells in M
 - $\Theta \leq n$ always
 - max 2 recursive calls at any level ⇒ ≤ 2n recursive calls total
 - M-Opt(*n*) is *O*(*n*)
 - Overall, O(n log n), or O(n) if presorted by start & finish times

Weighted Interval Scheduling: Iterative

Bottom Up Iteration

Input $n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n$ Sort jobs by finish times so $f_1 < f_2 < \ldots < f_n$ Compute p(1), p(2), ..., p(n)procedure ITER-OPT(i) $M[0] \leftarrow 0$ for $i = 1 \dots n$ do $M[i] \leftarrow max(v_i + M[p(i)], M[i-1])$ end for return M[i]end procedure

1 Weighted Interval Scheduling

2 Knapsack Problem

- 3 String Similarity
- 4 Common Errors with Dynamic Programming

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Knapsack Problem

- Given n objects and a knapsack
- Object *i* has weight w_i and value v_i .
- Knapsack has maximum weight W
- Goal: fill knapsack to maximize total value
- Example Instance
 - Knapsack max weight W = 11.
 - Packing items {3,4} gives total value 40.
- Can we use greedy?
- Greedy by value/weight ratio is sub-optimal. In the example, it would pack {5, 2, 1}, which only has value 35.

Knapsack Subproblems: first try

• Def. $OPT(i) = \max$ value subset of items $1, \ldots, i$.

- Case 1: OPT does not select item i.
 - OPT selects best of $\{1, 2, \ldots, i-1\}$
- Case 2: OPT selects item *i*.

Knapsack Subproblems: first try

- Def. $OPT(i) = \max$ value subset of items $1, \ldots, i$.
 - Case 1: OPT does not select item i.
 - OPT selects best of $\{1, 2, \ldots, i-1\}$
 - Case 2: OPT selects item *i*.
 - accepting item *i* does not immediately imply that we will have to reject other items.
 - without knowing what other items were selected before i, we don't even know if we have enough room for i
- Conclusion. Need more sub-problems!

Knapsack Subproblems: second try

- Def. OPT(i, S) = max value subset of items 1,..., i, using items in the set S.
- Works, but ...

Knapsack Subproblems: second try

Def. OPT(i, S) = max value subset of items 1,..., i, using items in the set S.

イロン イロン イヨン イヨン 二年

18/29

- Works, but …
- ... 2^n subproblems! we haven't saved any work

Knapsack Subproblems: second try

- Def. OPT(i, S) = max value subset of items 1,..., i, using items in the set S.
- Works, but …
- ... 2^n subproblems! we haven't saved any work
- Do we really need to know all of items chosen? Just need to know if we can stick in item i ...

Knapsack Subproblems: third time's a charm

- Only need to know the weight already in the knapsack
 Def. OPT(i, w) = max value subset of items 1,..., i weighing no more than w.
 - Case 1: OPT does not select item *i*.
 - OPT selects best of $\{1, 2, \dots, i-1\}$ weighing no more than w.
 - Case 2: OPT selects item *i*.
 - $w' = w w_i$
 - OPT adds item *i* to optimal solution from 1,...,*i* − 1 weighing no more than *w*′, the new weight limit.

The Reccurence:

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0\\ OPT(i - 1, w) & \text{if } w_i > w\\ max(v_i + OPT(i - 1, w - w_i), & 0 \\ OPT(i - 1, w) & 0 \\ 0 \end{cases}$$

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

String Similarity

5 mismatches, 1 gap

- How similar are two strings?
 - 1 ocurrance
 - 2 occurrence

1 mismatch, 1 gap

0 mismatches, 3 gaps

21/29

String Edit Distance

Applications

- Basis for "diff"
- Speech Recognition
- Computational Biology
- Edit Distance
 - Gap Penalty δ ; mismatch-penalty α_{pq}
 - Cost = sum of gap and mismatch penalties

イロト 不得 とくほ とくほう 二日

Sequence Alignment

- **Goal** Given two strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ find alignment of minimum cost.
- Def An alignment M is a set of ordered pairs (x_i, y_j) such that each item occurs in at most one pair and no crossings.
- **Def** The pair (x_i, y_j) and $(x_{i'}, y_{j'})$ cross f i < i' but j > j'.

$$cost(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i, y_j}}_{\text{mismatch}} + \underbrace{\sum_{i: x_i \text{ unmatched}} \delta + \sum_{j: y_j \text{ unmatched}} \delta}_{\text{gap}}$$

Sequence Alignment Subproblems

- Def OPT(i, j) = min cost of aligning strings x₁x₂...x_i and y₁y₂...y_j.
 - Case 1. OPT matches (x_i, y_j). Pay mismatch for (x_i, y_j)
 + min cost aligning substrings x₁x₂...x_{i-1} and

 $y_1y_2\ldots y_{j-1}$

- Case 2a. OPT leaves x_i unmatched. Pay gap for x_i and min cost of aligning x₁x₂...x_{i-1} and y₁y₂...y_j.
- Case 2b. OPT leaves y_i unmatched. Pay gap for y_i and min cost of aligning x₁x₂...x_i and y₁y₂...y_{j-1}.

Sequence Alignment Subproblems

- Def OPT(i, j) = min cost of aligning strings x₁x₂...x_i and y₁y₂...y_j.
 - Case 1. OPT matches (x_i, y_j). Pay mismatch for (x_i, y_j)
 + min cost aligning substrings x₁x₂...x_{i-1} and

 $y_1y_2\ldots y_{j-1}$

- Case 2a. OPT leaves x_i unmatched. Pay gap for x_i and min cost of aligning x₁x₂...x_{i-1} and y₁y₂...y_j.
- Case 2b. OPT leaves y_i unmatched. Pay gap for y_i and min cost of aligning x₁x₂...x_i and y₁y₂...y_{j-1}.

$$\begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$OPT(i,j) = \begin{cases} \alpha_{x_i,y_j} + OPT(i-1,j-1) \\ \delta + OPT(i-1,j) \\ \delta + OPT(i,j-1) \end{cases} \text{ otherwise} \\ \delta + OPT(i,j-1) \end{cases}$$

Sequence Alignment Runtime

- **Runtime**: $\Theta(mn)$
- Space: $\Theta(mn)$
- English words: $m, n \leq 10$
- Biology: $m, n \approx 10^5$
 - 10¹0 operations OK ...
 - 10 GB array is a problem
 - Can cut space down to O(m + n) (see Section 6.7)

1 Weighted Interval Scheduling

2 Knapsack Problem

3 String Similarity

4 Common Errors with Dynamic Programming

Dynamic Programming and TSP(1)

 Consider this Dyanmic Programming "solution" to the Travelling Salesman Problem

Order the points p_1, \ldots, p_n arbitrarily. for $i = 1, \ldots n$ do for $j = 1, \ldots i$ do Take optimal solution for points $p_1, \ldots p_{i-1}$, and put point p_i right after p_j . end for Keep optimal of all the attempts above. end for

The runtime of this algorithm is $\Theta(n^2)$. Is it really this easy?

Dynamic Programming and TSP (2)

The runtime of this algorithm is Θ(n²). Is it really this easy?

Dynamic Programming and TSP (2)

- The runtime of this algorithm is Θ(n²). Is it really this easy?
- NO. We don't have the "principle of optimality".
 - Why should the optimal solution for points p₁,..., p_i be based on the optimal solution for p₁,..., p_{i-1}???

Dynamic Programming and TSP (2)

The runtime of this algorithm is Θ(n²). Is it really this easy?

We have not bothered to prove the optimality for many of the problems we considered, because it is "clear". But be sure to check.

Dynamic Programming and TSP (3)

■ What if we changed the previous algorithm to keep track of all ordering of points p₁,..., p_i? The optimal solution for p₁,..., p_{i+1} must come from one of those, right?

Dynamic Programming and TSP (3)

- What if we changed the previous algorithm to keep track of all ordering of points p₁,..., p_i? The optimal solution for p₁,..., p_{i+1} must come from one of those, right?
- Sure, that would work.

Dynamic Programming and TSP (3)

■ What if we changed the previous algorithm to keep track of all ordering of points p₁,..., p_i? The optimal solution for p₁,..., p_{i+1} must come from one of those, right?

But now you're doing *n*! work.