CSE 421
Algorithms

Richard Anderson
Lecture 3

Draw a picture of something from
Seattle

What is the run time of the Stable
Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m Executed at most n? times
w highest on m’s list that m has not proposed to
if w is free, then match (m, w)
else
suppose (m,, w) is matched
if w prefers m to m,
unmatch (m,, w)
match (m, w)

O(1) time per iteration

* Find free m

* Find next available w

« If w is matched, determine m,
 Test if w prefer m to m,

» Update matching

What does it mean for an algorithm
to be efficient?

Definitions of efficiency

» Fast in practice

* Qualitatively better worst case
performance than a brute force algorithm




Polynomial time efficiency

+ An algorithm is efficient if it has a
polynomial run time

Run time as a function of problem size

— Run time: count number of instructions
executed on an underlying model of
computation

— T(n): maximum run time for all problems of
size at most n

Polynomial Time

* Algorithms with polynomial run time have
the property that increasing the problem
size by a constant factor increases the run
time by at most a constant factor
(depending on the algorithm)

Why Polynomial Time?

Generally, polynomial time seems to
capture the algorithms which are efficient
in practice

The class of polynomial time algorithms
has many good, mathematical properties

Polynomial vs. Exponential
Complexity
» Suppose you have an algorithm which takes n!
steps on a problem of size n

« If the algorithm takes one second for a problem
of size 10, estimate the run time for the following
problems sizes:

12 14 16 18 20

Ignoring constant factors

» Express run time as O(f(n))

+ Emphasize algorithms with slower growth
rates

* Fundamental idea in the study of
algorithms

« Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

» Constant factors are arbitrary
— Depend on the implementation
— Depend on the details of the model

» Determining the constant factors is tedious
and provides little insight




Why emphasize growth rates?

The algorithm with the lower growth rate
will be faster for all but a finite number of
cases

» Performance is most important for larger
problem size

+ As memory prices continue to fall, bigger
problem sizes become feasible

 Improving growth rate often requires new
techniques

Formalizing growth rates

* T(n) is O(f(n)) [T:Z"* 2 R']
— If sufficiently large n, T(n) is bounded by a
constant multiple of f(n)
— Exist ¢, ng, such that for n > ny, T(n) < c f(n)

* T(n) is O(f(n)) will be written as:
T(n) = O(f(n))

— Be careful with this notation

Prove 3n2 + 5n + 20 is O(n?)
Letc=

Letn, =

T(n) is O(f(n)) if there exist c, ny, such that for n > n,

T(n) < cf(n)

Order the following functions in
increasing order by their growth rate
a) nlog*n

b) 2n2+ 10n
2n/100

2

)
)
d) 1000n + log® n
e) nioo

fy 3n

1000 log'°n

) n'2

0 Q
-~

Lower bounds

« T(n) is Q(f(n))
—T(n) is at least a constant multiple of f(n)

— There exists an ny, and ¢ > 0 such that
T(n) > &f(n) for alln > n,

* Warning: definitions of Q vary

* T(n) is ©(f(n)) if T(n) is O(f(n)) and
T(n) is Q(f(n))

Useful Theorems

* If lim (f(n) / g(n)) = ¢ for ¢ > 0 then
f(n) = ©(g(n))

 If f(n) is O(g(n)) and g(n) is O(h(n)) then
f(n) is O(h(n))

« If f(n) is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) is O(h(n))




Ordering growth rates

« Forb>1and x>0
—logPn is O(nx)

e Forr>1andd>0
—ndis O(r")




