
1

CSE 421
Algorithms

Richard Anderson
Lecture 3

Draw a picture of something from
Seattle

What is the run time of the Stable
Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m

w highest on m’s list that m has not proposed to
if w is free, then match (m, w)
else

suppose (m2, w) is matched
if w prefers m to m2

unmatch (m2, w)
match (m, w)

Executed at most n2 times

O(1) time per iteration

• Find free m
• Find next available w
• If w is matched, determine m2

• Test if w prefer m to m2

• Update matching

What does it mean for an algorithm
to be efficient? Definitions of efficiency

• Fast in practice

• Qualitatively better worst case
performance than a brute force algorithm

2

Polynomial time efficiency

• An algorithm is efficient if it has a
polynomial run time

• Run time as a function of problem size
– Run time: count number of instructions

executed on an underlying model of
computation

– T(n): maximum run time for all problems of
size at most n

Polynomial Time

• Algorithms with polynomial run time have
the property that increasing the problem
size by a constant factor increases the run
time by at most a constant factor
(depending on the algorithm)

Why Polynomial Time?

• Generally, polynomial time seems to
capture the algorithms which are efficient
in practice

• The class of polynomial time algorithms
has many good, mathematical properties

Polynomial vs. Exponential
Complexity

• Suppose you have an algorithm which takes n!
steps on a problem of size n

• If the algorithm takes one second for a problem
of size 10, estimate the run time for the following
problems sizes:

12 14 16 18 20

Ignoring constant factors

• Express run time as O(f(n))
• Emphasize algorithms with slower growth

rates
• Fundamental idea in the study of

algorithms
• Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

• Constant factors are arbitrary
– Depend on the implementation
– Depend on the details of the model

• Determining the constant factors is tedious
and provides little insight

3

Why emphasize growth rates?

• The algorithm with the lower growth rate
will be faster for all but a finite number of
cases

• Performance is most important for larger
problem size

• As memory prices continue to fall, bigger
problem sizes become feasible

• Improving growth rate often requires new
techniques

Formalizing growth rates

• T(n) is O(f(n)) [T : Z+ R+]
– If sufficiently large n, T(n) is bounded by a

constant multiple of f(n)
– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:
T(n) = O(f(n))
– Be careful with this notation

Prove 3n2 + 5n + 20 is O(n2)

T(n) is O(f(n)) if there exist c, n0, such that for n > n0,
T(n) < c f(n)

Let c =

Let n0 =

Order the following functions in
increasing order by their growth rate
a) n log4n
b) 2n2 + 10n
c) 2n/100

d) 1000n + log8 n
e) n100

f) 3n

g) 1000 log10n
h) n1/2

Lower bounds

• T(n) is Ω(f(n))
– T(n) is at least a constant multiple of f(n)
– There exists an n0, and ε > 0 such that

T(n) > εf(n) for all n > n0

• Warning: definitions of Ω vary

• T(n) is Θ(f(n)) if T(n) is O(f(n)) and
T(n) is Ω(f(n))

Useful Theorems

• If lim (f(n) / g(n)) = c for c > 0 then
f(n) = Θ(g(n))

• If f(n) is O(g(n)) and g(n) is O(h(n)) then
f(n) is O(h(n))

• If f(n) is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) is O(h(n))

4

Ordering growth rates

• For b > 1 and x > 0
– logbn is O(nx)

• For r > 1 and d > 0
– nd is O(rn)

