CSE 421
Algorithms

Richard Anderson
Lecture 4

Announcements

* Homework 2, Due October 11, 1:30 pm.
* Reading

—Chapter 2.1, 2.2

— Chapter 3 (Mostly review)

— Start on Chapter 4

Today

« Finish discussion of asymptotics
-0,0,06

* Graph theory terminology

+ Basic graph algorithms

Formalizing growth rates

* T(n) is O(f(n)) [T:Z" > R']
— If sufficiently large n, T(n) is bounded by a
constant multiple of f(n)

— Exist ¢, ng, such that for n > ny, T(n) < c f(n)

* T(n) is O(f(n)) will be written as:
T(n) = O(f(n))

— Be careful with this notation

Order the following functions in
increasing order by their growth rate
a) nlog*n
b) 2n2 +10n
c) 210
d) 1000n + log® n
e) n'o
f) 3n
g) 1000 log'n
h) n'2

Ordering growth rates

e Forb>0and x>0

— logbn is O(nX)

e Forr>1andd>0

—ndis O(r")




Lower bounds

* T(n) is Q(f(n))
—T(n) is at least a constant multiple of f(n)

— There exists an n,, and ¢ > 0 such that
T(n) > &f(n) for all n > n,

» Warning: definitions of Q vary

- T(n) is O(f(n)) if T(n) is O(f(n)) and
T(n) is Q(f(n))

True or False
* nlognis O(n?)
* ndis O(4n3+2n +n)
* n'is O(n?)
* n'is Q(n?)

« f(n)=n2ifnis even, 0if nis odd
f(n) is Q(n?)

Useful Theorems

* If lim (f(n) / g(n)) = ¢ for ¢ > 0 then
f(n) = ©(g(n))

« If f(n) is O(g(n)) and g(n) is O(h(n)) then
f(n) is O(h(n))

« If f(n) is O(h(n)) and g(n) is O(h(n)) then
f(n) + g(n) is O(h(n))

Graph Theory

« G=(V,E)

— V — vertices

— E — edges
» Undirected graphs

— Edges sets of two vertices {u, v}
» Directed graphs

— Edges ordered pairs (u, v)
* Many other flavors

— Edge / vertices weights

— Parallel edges

— Self loops

Definitions

» Path: vy, vy, ..., vy, with (v;, vi,1) IN E
— Simple Path
— Cycle
— Simple Cycle
» Distance
» Connectivity
— Undirected
— Directed (strong connectivity)
» Trees
— Rooted
— Unrooted

Graph search

* Find apath fromstot

S={s}

While there exists (u, v) in E withuin Sand v notin S
Pred[v] =u
Addvto S
if (v = t) then path found




Breadth first search Key observation

» Explore vertices in layers » All edges go between vertices on the
—sin layer 1 same layer or adjacent layers
— Neighbors of s in layer 2
— Neighbors of layer 2 in layer 3 . . .

Bipartite Testing Bipartiteness
* A graph V is bipartite if V can be « If a graph contains an odd cycle, it is not
partitioned into V,, V, such that all edges bipartite
go between V, and V,
» A graph is bipartite if it can be two colored /O\
Two color this graph ﬂ
Algorithm

* Run BFS

» Color odd layers red, even layers blue

+ If no edges between the same layer, the
graph is bipartite

+ If edge between two vertices of the same

layer, then there is an odd cycle, and the
graph is not bipartite




