CSE 421 Algorithms

Richard Anderson Lecture 4

Announcements

- Homework 2, Due October 11, 1:30 pm.
- Reading
 - Chapter 2.1, 2.2
 - Chapter 3 (Mostly review)
 - Start on Chapter 4

Today

- Finish discussion of asymptotics O, Ω , Θ
- · Graph theory terminology
- · Basic graph algorithms

Formalizing growth rates

- T(n) is O(f(n)) $[T:Z^+ \rightarrow R^+]$
 - If sufficiently large n, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is O(f(n)) will be written as:
 T(n) = O(f(n))
 - Be careful with this notation

Order the following functions in increasing order by their growth rate

- a) n log4n
- b) $2n^2 + 10n$
- c) 2^{n/100}
- d) 1000n + log8 n
- e) n^{100}
- f) 3ⁿ
- g) 1000 log¹⁰n
- h) n^{1/2}

Ordering growth rates

- For b > 0 and x > 0
 - logbn is O(nx)
- For r > 1 and d > 0

 n^d is O(rⁿ)

Lower bounds

- T(n) is $\Omega(f(n))$
 - T(n) is at least a constant multiple of f(n)
 - There exists an n_0 , and ϵ > 0 such that $T(n) > \varepsilon f(n)$ for all $n > n_0$
- Warning: definitions of Ω vary
- T(n) is $\Theta(f(n))$ if T(n) is O(f(n)) and T(n) is $\Omega(f(n))$

True or False

- n log n is O(n2)
- n^3 is $O(4n^3 + 2n + n)$
- n-1 is O(n-2)
- n^{-1} is $\Omega(n^{-2})$
- $f(n) = n^2$ if n is even, 0 if n is odd f(n) is $\Omega(n^2)$

Useful Theorems

- If $\lim (f(n) / g(n)) = c$ for c > 0 then $f(n) = \Theta(g(n))$
- If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n))
- If f(n) is O(h(n)) and g(n) is O(h(n)) then f(n) + g(n) is O(h(n))

Graph Theory

- G = (V, E)
 - V verticesE edges
- Undirected graphs
 - Edges sets of two vertices {u, v}
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Definitions

- Path: $v_1, v_2, ..., v_k$, with (v_i, v_{i+1}) in E Simple Path

 - Cycle
- Simple Cycle
- Distance
- · Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph search

• Find a path from s to t

 $S = \{s\}$ While there exists (u, v) in E with u in S and v not in S Pred[v] = u Add v to S if (v = t) then path found

Breadth first search

- Explore vertices in layers
 - -s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .

Key observation

 All edges go between vertices on the same layer or adjacent layers

Bipartite

- A graph V is bipartite if V can be partitioned into V₁, V₂ such that all edges go between V₁ and V₂
- · A graph is bipartite if it can be two colored

Testing Bipartiteness

• If a graph contains an odd cycle, it is not bipartite

Algorithm

- Run BFS
- · Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite