CSE 421 Algorithms

Richard Anderson Lecture 7 Greedy Algorithms: Homework Scheduling and Optimal Caching

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Today's problems (Sections 4.2, 4.3)
 - Homework Scheduling
 - Optimal Caching

Homework Scheduling

- · Tasks to perform
- · Deadlines on the tasks
- Freedom to schedule tasks in any order

Scheduling tasks

- Each task has a length t_i and a deadline d_i
- · All tasks are available at the start
- One task may be worked on at a time
- · All tasks must be completed
- · Goal: minimize maximum lateness
 - Lateness = $f_i d_i$ if $f_i >= d_i$

Greedy Algorithm

- · Earliest deadline first
- · Order jobs by deadline
- · This algorithm is optimal

Analysis

- Suppose the jobs are ordered by deadlines, $d_1 \le d_2 \le \dots \le d_n$
- A schedule has an inversion if job j is scheduled before i where j > i
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

Lemma: There is an optimal schedule with no idle time

- It doesn't hurt to start your homework early!
- Note on proof techniques
 - This type of can be important for keeping proofs clean
 - It allows us to make a simplifying assumption for the remainder of the proof

Lemma

• If there is an inversion i, j, there is a pair of adjacent jobs i', j' which form an inversion

 Suppose there is a pair of jobs i and j, with i < j, d_i <= d_j, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.

Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

 Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Extensions

- What if the objective is to minimize the sum of the lateness?
 - EDF does not seem to work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

- · Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

· Discard element used farthest in the future

A, B, C, A, C, D, C, B, C, A, D

Correctness Proof

- Sketch
- · Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .