
1

CSE 421
Algorithms

Richard Anderson
Lecture 8

Optimal Caching
Dijkstra’s algorithm

Today’s Lecture

• Optimal Caching (Section 4.3)
• Dijkstra’s Algorithm (Section 4.4)

Optimal Caching

• Caching problem:
– Maintain collection of items in local memory
– Minimize number of items fetched

Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

• If you know the sequence of requests,
what is the optimal replacement pattern?

• Note – it is rare to know what the requests
are in advance – but we still might want to
do this:
– Some specific applications, the sequence is

known
– Competitive analysis, compare performance

on an online algorithm with an optimal offline
algorithm

Farthest in the future algorithm

• Discard element used farthest in the future
A, B, C, A, C, D, C, B, C, A, D

2

Correctness Proof

• Sketch
• Start with Optimal Solution O
• Convert to Farthest in the Future Solution

F-F
• Look at the first place where they differ
• Convert O to evict F-F element

– There are some technicalities here to ensure
the caches have the same configuration . . .

Single Source Shortest Path
Problem

• Given a graph and a start vertex s
– Determine distance of every vertex from s
– Identify shortest paths to each vertex

• Express concisely as a “shortest paths tree”
• Each vertex has a pointer to a predecessor on

shortest path

s

v

x

u
1 2

5

3 4

s

v

x

u
1

3

3

Construct Shortest Path Tree
from s

a

b

cs

e

g

f

d

4

2

-3

2
1

5

4

-2
3

3

6

3

7

4
a

b

cs

e

g

f

d

Warmup

• If P is a shortest path from s to v, and if t is
on the path P, the segment from s to t is a
shortest path between s and t

• WHY?
s

t
v

Dijkstra’s Algorithm

S = {}; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

1
4

3

2

3

2

1

2

10
1

2 2

5

4

Assume all edges have non-negative cost
Simulate Dijkstra’s algorithm

(strarting from s) on the graph

5
4
3
2
1

Round Vertex
Added

s a b c d

b d

ca
1

1

1

23

4

6
1

3

4
s

3

Dijkstra’s Algorithm as a greedy
algorithm

• Elements committed to the solution by
order of minimum distance

Correctness Proof

• Elements in S have the correct label
• Key to proof: when v is added to S, it has

the correct distance label.

s

y

v

x

u

Proof

• Let Pv be the path of length d[v], with an
edge (u,v)

• Let P be some other path to v. Suppose P
first leaves S on the edge (x, y)
– P = Psx + c(x,y) + Pyv

– Len(Psx) + c(x,y) >= d[y]
– Len(Pyv) >= 0
– Len(P) >= d[y] + 0 >= d[v]

s

y

v

x

u

Negative Cost Edges

• Draw a small example a negative cost
edge and show that Dijkstra’s algorithm
fails on this example

Bottleneck Shortest Path

• Define the bottleneck distance for a path
to be the maximum cost edge along the
path

s

v

x

u
6 5

5

3 4

2

Compute the bottleneck shortest
paths

a

b

cs

e

g

f

d

4

2

-3

6
6

5

4

-2
3

4

6

3

7

4
a

b

cs

e

g

f

d

4

How do you adapt Dijkstra’s algorithm
to handle bottleneck distances

• Does the correctness proof still apply?

