CSE 421 Algorithms

Richard Anderson Lecture 8 Optimal Caching Dijkstra's algorithm

Today's Lecture

- Optimal Caching (Section 4.3)
- Dijkstra's Algorithm (Section 4.4)

Optimal Caching

- · Caching problem:
 - Maintain collection of items in local memory
 - Minimize number of items fetched

Caching example A, B, C, D, A, E, B, A, D, A, C, B, D, A

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note it is rare to know what the requests are in advance – but we still might want to do this:
 - Some specific applications, the sequence is known
 - Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

· Discard element used farthest in the future

Correctness Proof

- Sketch
- · Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- · Look at the first place where they differ
- · Convert O to evict F-F element
 - There are some technicalities here to ensure the caches have the same configuration . . .

Single Source Shortest Path Problem

- · Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path

Dijkstra's Algorithm as a greedy algorithm

• Elements committed to the solution by order of minimum distance

Correctness Proof

- · Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.

Proof

- Let P_v be the path of length d[v], with an edge (u,v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)

$$-P = P_{sx} + c(x,y) + P_{yy}$$

$$-\operatorname{Len}(P_{sx}) + c(x,y) >= d[y]$$

$$-\operatorname{Len}(P_{vv}) >= 0$$

$$- Len(P) >= d[y] + 0 >= d[v]$$

Negative Cost Edges

 Draw a small example a negative cost edge and show that Dijkstra's algorithm fails on this example

Bottleneck Shortest Path

 Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths

How do you adapt Dijkstra's algorithm to handle bottleneck distances

• Does the correctness proof still apply?