CSE 421 Algorithms

Richard Anderson Lecture 9 Minimum Spanning Trees

Who was Dijkstra?

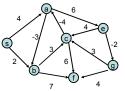
· What were his major contributions?

http://www.cs.utexas.edu/users/EWD/

- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
 - algorithm design
 - programming languages
 - program design
 - operating systems
 - distributed processing
 - formal specification and verification
 - design of mathematical arguments

Shortest Paths

- Negative Cost Edges
 - Dijkstra's algorithm assumes positive cost edges
 - For some applications, negative cost edges make sense
 - Shortest path not well defined if a graph has a negative cost cycle



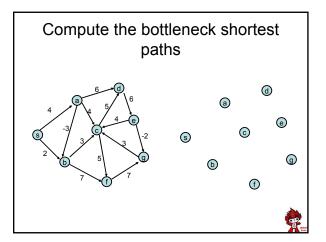
Negative Cost Edge Preview

- Topological Sort can be used for solving the shortest path problem in directed acyclic graphs
- Bellman-Ford algorithm finds shortest paths in a graph with negative cost edges (or reports the existence of a negative cost cycle).

Dijkstra's Algorithm Implementation and Runtime S = {}; d[s] = 0; d[v] = infinity for v! = s While S! = V Choose v in V-S with minimum d[v] Add v to S For each w in the neighborhood of v d[w] = min(d[w], d[v] + c(v, w)) HEAP OPERATIONS n Extract Mins m Heap Updates Edge costs are assumed to be non-negative

Bottleneck Shortest Path

 Define the bottleneck distance for a path to be the maximum cost edge along the path

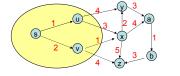


Dijkstra's Algorithm for Bottleneck Shortest Paths

 $S = \{\}; \quad d[s] = \text{negative infinity}; \quad d[v] = \text{infinity for } v \mathrel{!=} s$ While $S \mathrel{!=} V$

Choose v in V-S with minimum d[v] Add v to S

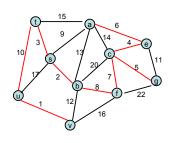
For each w in the neighborhood of v d[w] = min(d[w], max(d[v], c(v, w)))



Minimum Spanning Tree

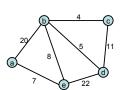
- Introduce Problem
- Demonstrate three different greedy algorithms
- · Provide proofs that the algorithms work

Minimum Spanning Tree



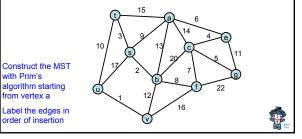
Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest out going edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that does not disconnect the graph



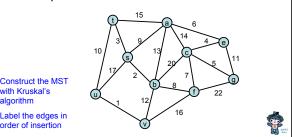
Greedy Algorithm 1 Prim's Algorithm

 Extend a tree by including the cheapest out going edge



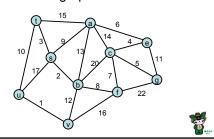
Greedy Algorithm 2 Kruskal's Algorithm

Add the cheapest edge that joins disjoint components



Greedy Algorithm 3 Reverse-Delete Algorithm

 Delete the most expensive edge that does not disconnect the graph



Construct the MST with the reverse-

delete algorithm

Label the edges in order of removal

Proof

- Suppose T is a spanning tree that does not contain e
- · Add e to T, this creates a cycle
- The cycle must have some edge e₁ = (u₁, v₁) with u₁ in S and v₁ in V-S
- $T_1 = T \{e_1\} + \{e\}$ is a spanning tree with lower cost
- · Hence, T is not a minimum spanning tree

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct
- Let S be a subset of V, and suppose e =

 (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree

Optimality Proofs

- · Prim's Algorithm computes a MST
- · Kruskal's Algorithm computes a MST

Reverse-Delete Algorithm

• Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
 - Add small quantities to the weights
 - Give a tie breaking rule for equal weight edges

Dijkstra's Algorithm for Minimum Spanning Trees

 $S = \{\}; \quad d[s] = 0; \quad d[v] = \text{infinity for } v != s$ While S != V

Choose v in V-S with minimum d[v]

For each w in the neighborhood of v

