
1

CSE 421
Algorithms

Richard Anderson
Lecture 13

Divide and Conquer

Announcements

• HW 5 available
– Deadline Friday, Nov 3.

• Midterm
– Friday, Nov 3.
– Material from lecture/text through end of

chapter 5
– 50 minutes, in class, closed book/notes, short

answer, approximately five problems,
problems easier than HW problems.

What you really need to know
about recurrences

• Work per level changes geometrically with
the level

• Geometrically increasing (x > 1)
– The bottom level wins

• Geometrically decreasing (x < 1)
– The top level wins

• Balanced (x = 1)
– Equal contribution

T(n) = aT(n/b) + nc

• Balanced: a = bc

• Increasing: a > bc

• Decreasing: a < bc

Classify the following recurrences
(Increasing, Decreasing, Balanced)
• T(n) = n + 5T(n/8)

• T(n) = n + 9T(n/8)

• T(n) = n2 + 4T(n/2)

• T(n) = n3 + 7T(n/2)

• T(n) = n1/2 + 3T(n/4)

Divide and Conquer Algorithms

• Split into sub problems
• Recursively solve the problem
• Combine solutions

• Make progress in the split and combine
stages
– Quicksort – progress made at the split step
– Mergesort – progress made at the combine

step

2

Closest Pair Problem

• Given a set of points find the pair of points
p, q that minimizes dist(p, q)

Divide and conquer

• If we solve the problem on two subsets,
does it help? (Separate by median x
coordinate)

δ1 δ2

Packing Lemma
Suppose that the minimum distance between
points is at least δ, what is the maximum number of
points that can be packed in a ball of radius δ?

Combining Solutions

• Suppose the minimum separation from the
sub problems is δ

• In looking for cross set closest pairs, we
only need to consider points with δ of the
boundary

• How many cross border interactions do we
need to test?

A packing lemma bounds the
number of distances to check

δ

Details

• Preprocessing: sort points by y
• Merge step

– Select points in boundary zone
– For each point in the boundary

• Find highest point on the other side that is at most
δ above

• Find lowest point on the other side that is at most δ
below

• Compare with the points in this interval (there are
at most 6)

3

Identify the pairs of points that are compared
in the merge step following the recursive
calls

Algorithm run time

• After preprocessing:
– T(n) = cn + 2 T(n/2)

Inversion Problem

• Let a1, . . . an be a permutation of 1 . . n
• (ai, aj) is an inversion if i < j and ai > aj

• Problem: given a permutation, count the number
of inversions

• This can be done easily in O(n2) time
– Can we do better?

4, 6, 1, 7, 3, 2, 5

Application

• Counting inversions can be use to
measure how close ranked preferences
are
– People rank 20 movies, based on their

rankings you cluster people who like that
same type of movie

Counting Inversions
14101368165915327141211

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves

141211 15327

15327141211

81659 1410136

141013681659

Count the Inversions

14101368165915327141211

4

Problem – how do we count inversions
between sub problems in O(n) time?

• Solution – Count inversions while merging

15121174321 161413109865

Standard merge algorithms – add to inversion count
when an element is moved from the upper array to the
solution

Use the merge algorithm to count
inversions

121141 15732

16985 1413106

