CSE 421
Algorithms

Richard Anderson
Lecture 13
Divide and Conquer

Announcements

* HW 5 available

— Deadline Friday, Nov 3.
* Midterm

— Friday, Nov 3.

— Material from lecture/text through end of
chapter 5

— 50 minutes, in class, closed book/notes, short
answer, approximately five problems,
problems easier than HW problems.

What you really need to know
about recurrences
» Work per level changes geometrically with
the level
+ Geometrically increasing (x > 1)
— The bottom level wins
» Geometrically decreasing (x < 1)
— The top level wins
» Balanced (x = 1)
— Equal contribution

T(n) = aT(n/b) + ne

» Balanced: a =b¢

* Increasing: a > b°¢

» Decreasing: a < b¢

Classify the following recurrences
(Increasing, Decreasing, Balanced)
e T(n)=n+5T(n/8)

e T(n)=n+9T(n/8)
e T(n) =n2+4T(n/2)
e T(n)=nd+7T(n/2)

* T(n) =n"2 + 3T(n/4)

Divide and Conquer Algorithms

Split into sub problems
Recursively solve the problem
» Combine solutions

* Make progress in the split and combine
stages
— Quicksort — progress made at the split step

— Mergesort — progress made at the combine
step

Closest Pair Problem

+ Given a set of points find the pair of points
p, q that minimizes dist(p, q)
[

Divide and conquer

« If we solve the problem on two subsets,
does it help? (Separate by median x
coordinate)

O o ©® ®
5, O o e} (6} e,
0 5 ®
@
o o ©O ® ®
(e}
e) @
o O @) ©® ®

Packing Lemma

Suppose that the minimum distance between
points is at least 5, what is the maximum number of
points that can be packed in a ball of radius 8?

Combining Solutions

» Suppose the minimum separation from the
sub problems is &

* In looking for cross set closest pairs, we
only need to consider points with & of the
boundary

* How many cross border interactions do we
need to test?

A packing lemma bounds the
number of distances to check

:
o
¢

@@ - @

—

)

Details

* Preprocessing: sort points by y
* Merge step
— Select points in boundary zone

— For each point in the boundary

« Find highest point on the other side that is at most
8 above

 Find lowest point on the other side that is at most
below

« Compare with the points in this interval (there are
at most 6)

Identify the pairs of points that are compared
in the merge step following the recursive

calls

=

Algorithm run time

* After preprocessing:
—T(n)=cn+2T(n/2)

Inversion Problem

* Letay,...a,beapermutationof1..n
* (a, &) is aninversionifi<jand a > g
4,6,1,7,3,2,5

* Problem: given a permutation, count the number
of inversions

 This can be done easily in O(n2) time
— Can we do better?

Application

» Counting inversions can be use to
measure how close ranked preferences
are
— People rank 20 movies, based on their

rankings you cluster people who like that
same type of movie

Counting Inversions

|11\12\4 \1 \7 \2 \3 \15\9 \5 ‘16‘8 \6 \13\10\14|

Count inversions on lower half
Count inversions on upper half

Count the inversions between the halves

Count the Inversions

[11]12]4 T1][7 2 [3 [15] [9 [5 [16]8 | [6 [13]10]14

[11]12]4 J1 J7 J2 [3 [15] [o [5 [16]8 [6 [13]10]14]

[11]12]4 J1 J7 J2 [3 J15]9 [5 [16]8 [6 [13]10]14]

Problem — how do we count inversions
between sub problems in O(n) time?

+ Solution — Count inversions while merging

[1]2 [s [a 7 J11]12]15] [5 [6 [8 Jo [10][13]14]16]

Standard merge algorithms — add to inversion count
when an element is moved from the upper array to the
solution

Use the merge algorithm to count
inversions

s [8 [9 [16] [6 [10]13]14]

