CSE 421 Algorithms

Richard Anderson Lecture 16a Dynamic Programming

Dynamic Programming

- · Weighted Interval Scheduling
- Given a collection of intervals I₁,...,I_n with weights w₁,...,w_n, choose a maximum weight set of non-overlapping intervals

Recursive Algorithm

Intervals sorted by finish time p[i] is the index of the last interval which finishes before i starts

1	
2	
3	
4	
5	
6	
7	
8	 ,

Optimality Condition

• Opt[j] is the maximum weight independent set of intervals $\mathbf{I_1},\,\mathbf{I_2},\,\ldots,\,\mathbf{I_j}$

Algorithm

MaxValue(j) =

if j = 0 return 0

else

return max(MaxValue(j-1),

w_i + MaxValue(p[j]))

Run time

- What is the worst case run time of MaxValue
- · Design a worst case input

A better algorithm

```
MaxValue(j) =
  if j = 0 return 0;
  else if M[j]!= -1 return M[j];
  else
    M[j] = max(MaxValue(j-1),w<sub>i</sub> + MaxValue(p[j]));
```

return M[j];

 $M[\ j\]$ initialized to -1 before the first recursive call for all j

Iterative Algorithm Express the MaxValue algorithm as an iterative algorithm MaxValue {

Fill in the array with the Opt values

$$Opt[j] = max (Opt[j-1], w_j + Opt[p[j]])$$

Computing the solution

 $Opt[j] = max (Opt[j-1], w_j + Opt[p[j]])$ Record which case is used in Opt computation

}

Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- · Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

What is the optimal linear interpolation with three line segments

What is the optimal linear interpolation with n line segments

Notation

- Points p₁, p₂, . . ., p_n ordered by x-coordinate (p_i = (x_i, y_i))
- E_{i,j} is the least squares error for the optimal line interpolating p_i, . . . p_i

Optimal interpolation with two segments

- Give an equation for the optimal interpolation of p_1, \ldots, p_n with two line segments
- $E_{i,j}$ is the least squares error for the optimal line interpolating $p_i, \ldots p_i$

Optimal interpolation with k segments

- · Optimal segmentation with three segments
 - $Min_{i,j} \{ E_{1,i} + E_{i,j} + E_{j,n} \}$
 - O(n²) combinations considered
- Generalization to k segments leads to considering O(n^{k-1}) combinations

$\begin{aligned} & \text{Opt}_k[\ j\] : \text{Minimum error} \\ & \text{approximating}\ p_1...p_j \ \text{with}\ k \ \text{segments} \end{aligned}$

How do you express $Opt_k[\ j\]$ in terms of $Opt_{k-1}[1],...,Opt_{k-1}[\ j\]?$

Optimal multi-segment interpolation

```
Compute Opt[ k, j ] for 0 < k < j < n

for j := 1 to n

Opt[ 1, j] = E_{1,j};

for k := 2 to n-1

for j := 2 to n

t := E_{1,j}

for i := 1 to j - 1

t = min(t, Opt[k-1, i] + E_{i,j})

Opt[k, j] = t
```