CSE 421 Algorithms

Richard Anderson Lecture 18 Dynamic Programming

Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

Today - Examples

- · Examples
 - Optimal Billboard Placement
 Text, Solved Exercise, Pg 307
 - Linebreaking with hyphenation
 - Compare with HW problem 6, Pg 317
 - String approximation
 - Text, Solved Exercise, Page 309

Billboard Placement

- Maximize income in placing billboards
 b_i = (p_i, v_i), v_i: value of placing billboard at position p_i
- Constraint:
 At most one billboard every five miles
 Example
 - {(6,5), (8,6), (12, 5), (14, 1)}

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Input $b_1, ..., b_n$, where $bi = (p_i, v_i)$, position and value of billboard i

Opt[k] = fun(Opt[0],...,Opt[k-1])

How is the solution determined from sub problems?

Input $b_1, \, ..., \, b_n$, where bi = (p_i, v_i), position and value of billboard i

Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
 - Avoid excessive white space
 - Limit number of hyphens
 - Avoid widows and orphans
 - Etc.

Penalty Function

 Pen(i, j) – penalty of starting a line a position i, and ending at position j

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

Key technical idea

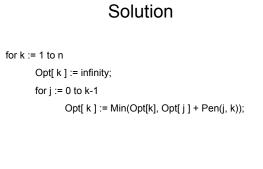
 Number the breaks between words/syllables

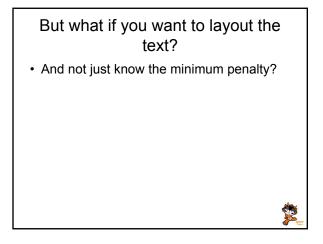
Design a Dynamic Programming Algorithm for Optimal Line Breaking

- Compute Opt[1], Opt[2], . . ., Opt[n]
- What is Opt[k]?

Opt[k] = fun(Opt[0],...,Opt[k-1])

How is the solution determined from sub problems?





Solution

for k := 1 to n Opt[k] := infinity; for j := 0 to k-1 temp := Opt[j] + Pen(j, k); if (temp < Opt[k]) Opt[k] = temp; Best[k] := j;

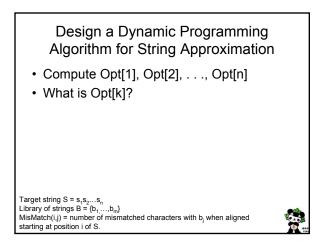
String approximation

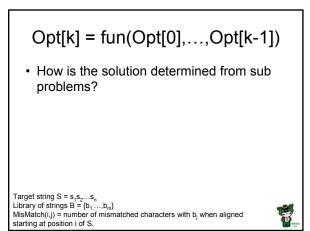
 Given a string S, and a library of strings B = {b₁, ...b_m}, construct an approximation of the string S by using copies of strings in B.

- B = {abab, bbbaaa, ccbb, ccaacc}
- S = abaccbbbaabbccbbccaabab

Formal Model

- Strings from B assigned to nonoverlapping positions of S
- Strings from B may be used multiple times
- + Cost of δ for unmatched character in S
- Cost of $\boldsymbol{\gamma}$ for mismatched character in S
 - MisMatch(i, j) number of mismatched characters of b_j, when aligned starting with position i in s.





Solution

for i := 1 to n $\begin{array}{l} Opt[k] = Opt[k-1] + \delta;\\\\ for j := 1 \ to \ |B|\\\\ p = i - len(b_j);\\\\ Opt[k] = min(Opt[k], \ Opt[p-1] + \gamma \ MisMatch(p, j)); \end{array}$