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CSE 421
Algorithms

Richard Anderson
Lecture 18

Dynamic Programming

Dynamic Programming

• The most important algorithmic technique 
covered in CSE 421

• Key ideas
– Express solution in terms of a polynomial 

number of sub problems
– Order sub problems to avoid recomputation

Today - Examples

• Examples
– Optimal Billboard Placement

• Text, Solved Exercise, Pg 307
– Linebreaking with hyphenation

• Compare with HW problem 6, Pg 317
– String approximation

• Text, Solved Exercise, Page 309

Billboard Placement

• Maximize income in placing billboards
– bi = (pi, vi),  vi: value of placing billboard at  

position pi

• Constraint:
– At most one billboard every five miles

• Example
– {(6,5), (8,6), (12, 5), (14, 1)}

Design a Dynamic Programming  
Algorithm for Billboard Placement

• Compute Opt[1], Opt[2], . . ., Opt[n]
• What is Opt[k]?

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub 
problems?

Input b1, …, bn, where bi = (pi, vi), position and value of billboard i
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Solution

j = 0;                // j is five miles behind the current position

// the last valid location for a billboard, if one placed at P[k]

for k := 1 to n

while (P[ j ] < P[ k ] – 5)

j := j + 1;

j := j – 1;

Opt[ k]  = Max(Opt[ k-1] , V[ k ] + Opt[ j ]);

Optimal line breaking and hyphen-
ation

• Problem: break lines and insert hyphens to 
make lines as balanced as possible

• Typographical considerations:
– Avoid excessive white space
– Limit number of hyphens
– Avoid widows and orphans
– Etc. 

Penalty Function

• Pen(i, j) – penalty of starting a line a 
position i, and ending at position j

• Key technical idea
– Number the breaks between words/syllables

Opt-i-mal line break-ing and hyph-en-a-tion is com-put-ed with dy-nam-ic pro-gram-ming

Design a Dynamic Programming 
Algorithm for Optimal Line Breaking

• Compute Opt[1], Opt[2], . . ., Opt[n]
• What is Opt[k]?

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub 
problems?

Solution

for k := 1 to n

Opt[ k ] := infinity;

for j := 0 to k-1

Opt[ k ] := Min(Opt[k], Opt[ j ] + Pen(j, k));
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But what if you want to layout the 
text?

• And not just know the minimum penalty?

Solution

for k := 1 to n

Opt[ k ] := infinity;

for j := 0 to k-1

temp := Opt[ j ] + Pen(j, k);

if (temp < Opt[ k ])

Opt[ k]  = temp;

Best[ k ] := j;

String approximation

• Given a string S, and a library of strings B 
= {b1, …bm}, construct an approximation of 
the string S by using copies of strings in B. 

B = {abab, bbbaaa, ccbb, ccaacc}

S = abaccbbbaabbccbbccaabab

Formal Model

• Strings from B assigned to non-
overlapping positions of S

• Strings from B may be used multiple times
• Cost of δ for unmatched character in S
• Cost of γ for mismatched character in S

– MisMatch(i, j) – number of mismatched 
characters of bj, when aligned starting with 
position i in s.

Design a Dynamic Programming 
Algorithm for String Approximation

• Compute Opt[1], Opt[2], . . ., Opt[n]
• What is Opt[k]?

Target string S = s1s2…sn
Library of strings B = {b1,…,bm}
MisMatch(i,j) = number of mismatched characters with bj when aligned
starting at position i of S.

Opt[k] = fun(Opt[0],…,Opt[k-1])

• How is the solution determined from sub 
problems?

Target string S = s1s2…sn
Library of strings B = {b1,…,bm}
MisMatch(i,j) = number of mismatched characters with bj when aligned
starting at position i of S.
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Solution

for i := 1 to n

Opt[k] = Opt[k-1] + δ;

for j := 1 to |B|

p = i – len(bj);

Opt[k] = min(Opt[k],  Opt[p-1] + γ MisMatch(p, j));


