
1

CSE 421
Algorithms

Richard Anderson
Lecture 19

Longest Common Subsequence

Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if
C can be obtained by removing elements
from A (but retaining order)

• LCS(A, B): A maximum length sequence
that is a subsequence of both A and B

ocurranec

occurrence

attacggct

tacgacca

Determine the LCS of the following
strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

• Align sequences with gaps

• Charge δx if character x is unmatched
• Charge γxy if character x is matched to

character y

CAT TGA AT

CAGAT AGGA

Note: the problem is often expressed as a minimization problem,
with γxx = 0 and δx > 0

LCS Optimization

• A = a1a2…am

• B = b1b2…bn

• Opt[j, k] is the length of
LCS(a1a2…aj, b1b2…bk)

Optimization recurrence

If aj = bk, Opt[j,k] = 1 + Opt[j-1, k-1]

If aj != bk, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])

2

Give the Optimization Recurrence
for the String Alignment Problem

• Charge δx if character x is unmatched
• Charge γxy if character x is matched to

character y

Opt[j, k] =

Let aj = x and bk = y
Express as minimization

Dynamic Programming
Computation

Code to compute Opt[j,k] Storing the path information

A[1..m], B[1..n]

for i := 1 to m Opt[i, 0] := 0;

for j := 1 to n Opt[0,j] := 0;

Opt[0,0] := 0;

for i := 1 to m

for j := 1 to n

if A[i] = B[j] { Opt[i,j] := 1 + Opt[i-1,j-1]; Best[i,j] := Diag; }

else if Opt[i-1, j] >= Opt[i, j-1]

{ Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }

else { Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }

a1…am

b 1
…

b n

How good is this algorithm?

• Is it feasible to compute the LCS of two
strings of length 100,000 on a standard
desktop PC? Why or why not.

Observations about the Algorithm

• The computation can be done in O(m+n)
space if we only need one column of the
Opt values or Best Values

• The algorithm can be run from either end
of the strings

