CSE 421 Algorithms

Richard Anderson
Lecture 19
Longest Common Subsequence

Longest Common Subsequence

- C=c₁...c_g is a subsequence of A=a₁...a_m if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

ocurranec attacggct occurrence tacgacca

Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

String Alignment Problem

- Align sequences with gaps
 CAT TGA AT
 CAGAT AGGA
- Charge $\delta_{\boldsymbol{x}}$ if character \boldsymbol{x} is unmatched
- Charge γ_{xy} if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with γ_{xx} = 0 and δ_x > 0

LCS Optimization

- A = $a_1 a_2 ... a_m$
- B = $b_1b_2...b_n$
- Opt[j, k] is the length of LCS(a₁a₂...a_j, b₁b₂...b_k)

Optimization recurrence

If $a_i = b_k$, Opt[j,k] = 1 + Opt[j-1, k-1]

If $a_i != b_k$, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])

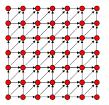
Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character \boldsymbol{x} is matched to character \boldsymbol{y}

Opt[j, k] =

Let $a_j = x$ and $b_k = y$ Express as minimization

Dynamic Programming Computation



Code to compute Opt[j,k]

Storing the path information

```
 \begin{aligned} &A[1..m], \ B[1..n] \\ &\text{for } i := 1 \text{ to } m \\ &\text{Opt}[i, 0] := 0; \\ &\text{for } j := 1 \text{ to } n \\ &\text{Opt}[0,0] := 0; \\ &\text{Opt}[0,0] := 0; \\ &\text{for } i := 1 \text{ to } m \end{aligned}  
 &\text{for } j := 1 \text{ to } n \\ &\text{if } A[i] = B[j] \ \{ \ Opt[i,j] := 1 + Opt[i-1,j-1]; \ Best[i,j] := Diag; \} \\ &\text{else if } Opt[i-1, j] >= Opt[i, j-1] \\ &\text{ } \{ \ Opt[i, j] := Opt[i, j-1], Best[i,j] := Left; \} \\ &\text{else } \{ \ Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; \} \end{aligned}
```

How good is this algorithm?

 Is it feasible to compute the LCS of two strings of length 100,000 on a standard desktop PC? Why or why not.

Observations about the Algorithm

- The computation can be done in O(m+n) space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings