CSE 421
Algorithms

Richard Anderson
Lecture 19
Longest Common Subsequence

Determine the LCS of the following
strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN

Longest Common Subsequence

* C=c;...cy is a subsequence of A=a;...a,, if
C can be obtained by removing elements
from A (but retaining order)

* LCS(A, B): A maximum length sequence
that is a subsequence of both A and B

ocurranec attacggct

occurrence tacgacca

String Alignment Problem

 Align sequences with gaps
CAT TGA AT

CAGAT AGGA

» Charge 9, if character x is unmatched
* Charge y,, if character x is matched to
character y

Note: the problem is often expressed as a minimization problem,
with v, = 0 and 5, > 0

LCS Optimization

* A=aja,...a,
* B=Dbb,...b,

* Opt[j, k] is the length of
LCS(a,a,...a;, byb,...by)

Optimization recurrence

Ifa;=b,, Opt[jk]=1+Opt[j1,k-1]

If a 1= by, Optj,k] = max(Opt] j-1,k], Opt{ j,k-1])




Give the Optimization Recurrence
for the String Alignment Problem

» Charge 9, if character x is unmatched

* Charge y,, if character x is matched to
character y

Opt[j, k] =

Leta,=xandb, =y
Express as minimization

Dynamic Programming
Computation

ATRTRTATATAN
ATRTETATATAN

RTATATATATAY

ATATRTATATAN
SNV,
SN,

Code to compute Opt][j,k]

Storing the path information

Al1..m], B[1..n] .
o
fori:=1tom Optfi, 0]:=0; L
Qo
forj:=1ton Opt[0,j] := 0;

Opt[0,0] := 0;
a,...a,
fori:z=1tom
forj:=1ton
if Ali] = B[j] { Optlij] := 1 + Opt[i-1,j-1]; Best]i,j] := Diag; }
else if Optfi-1, j] >= Optfi, j-1]
{ Optli, j] := Opt]i-1, j], Best][i,j] := Left; }
else { Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }

How good is this algorithm?

* |s it feasible to compute the LCS of two
strings of length 100,000 on a standard
desktop PC? Why or why not.

ad

Observations about the Algorithm

» The computation can be done in O(m+n)
space if we only need one column of the
Opt values or Best Values

» The algorithm can be run from either end
of the strings




