CSE 421 Algorithms

Richard Anderson Lecture 20 Memory Efficient Longest Common Subsequence

Longest Common Subsequence

- C=c₁...c_g is a subsequence of A=a₁...a_m if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

ocurranec attacggct occurrence tacgacca

LCS Optimization

- A = $a_1 a_2 ... a_m$
- B = $b_1 b_2 ... b_n$
- Opt[j, k] is the length of LCS(a₁a₂...a_i, b₁b₂...b_k)

Optimization recurrence

If $a_j = b_k$, Opt[j,k] = 1 + Opt[j-1, k-1]

If $a_j != b_k$, Opt[j,k] = max(Opt[j-1,k], Opt[j,k-1])

Dynamic Programming Computation

Storing the path information

Algorithm Performance

- O(nm) time and O(nm) space
- · On current desktop machines
 - -n, m < 10,000 is easy
 - n, m > 1,000,000 is prohibitive
- Space is more likely to be the bounding resource than time

Observations about the Algorithm

- The computation can be done in O(m+n) space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Computing LCS in O(nm) time and O(n+m) space

- · Divide and conquer algorithm
- · Recomputing values used to save space

Divide and Conquer Algorithm

 Where does the best path cross the middle column?

 For a fixed i, and for each j, compute the LCS that has a_i matched with b_i

Constrained LCS

- LCS_{i,i}(A,B): The LCS such that
 - $-a_1,...,a_i$ paired with elements of $b_1,...,b_i$
 - $-\,a_{i+1}, \ldots a_m$ paired with elements of b_{i+1}, \ldots, b_n
- LCS_{4,3}(abbacbb, cbbaa)

A = RRSSRTTRTS B=RTSRRSTST

Compute LCS_{5,0}(A,B), LCS_{5,1}(A,B),...,LCS_{5,9}(A,B)

A = RRSSRTTRTS B=RTSRRSTST

Compute LCS_{5,0}(A,B), LCS_{5,1}(A,B),...,LCS_{5,9}(A,B)

j	left	right
0	0	4
1	1	4
2	1	3
3	2	3
	3	3
5	3	2
6 7	3	2
7	3	1
8	4	1
0	4	^

Computing the middle column

- From the left, compute LCS($a_1...a_{m/2}$, $b_1...b_j$)
- From the right, compute LCS($a_{m/2+1}...a_m,b_{j+1}...b_n$)
- · Add values for corresponding j's

· Note - this is space efficient

Divide and Conquer

- A = $a_1, ..., a_m$
- $B = b_1, \dots, b_n$
- Find j such that
 - $-LCS(a_1...a_{m/2}, b_1...b_i)$ and
 - LCS($a_{m/2+1}...a_m,b_{j+1}...b_n$) yield optimal solution
- Recurse

Algorithm Analysis

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm

Prove by induction that $T(m,n) \le 2cmn$

Memory Efficient LCS Summary

- We can afford O(nm) time, but we can't afford O(nm) space
- If we only want to compute the length of the LCS, we can easily reduce space to O(n+m)
- Avoid storing the value by recomputing values
 - Divide and conquer used to reduce problem sizes

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
 - O(mlog n) time, positive cost edges
- General case handling negative edges
- If there exists a negative cost cycle, the shortest path is not defined
- · Bellman-Ford Algorithm
 - O(mn) time for graphs with negative cost edges

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most n-1 edges

Shortest paths with a fixed number of edges

• Find the shortest path from v to w with exactly k edges

Express as a recurrence

- $Opt_k(w) = min_x [Opt_{k-1}(x) + c_{xw}]$
- Opt₀(w) = 0 if v=w and infinity otherwise

Algorithm, Version 1

foreach w $M[0,\,w] = infinity;$ $M[0,\,v] = 0;$ for i = 1 to n-1

foreach w

 $M[i, w] = min_x(M[i-1,x] + cost[x,w]);$