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CSE 421
Algorithms

Richard Anderson
Lecture 20

Memory Efficient Longest Common 
Subsequence

Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if 
C can be obtained by removing elements 
from A (but retaining order)

• LCS(A, B):  A maximum length sequence 
that is a subsequence of both A and B
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LCS Optimization

• A = a1a2…am

• B = b1b2…bn

• Opt[ j, k] is the length of          
LCS(a1a2…aj, b1b2…bk)

Optimization recurrence

If aj = bk,  Opt[ j,k ] = 1 + Opt[ j-1, k-1 ]

If aj != bk,  Opt[ j,k] = max(Opt[ j-1,k], Opt[ j,k-1])

Dynamic Programming 
Computation Storing the path information

A[1..m],  B[1..n]

for i := 1 to m     Opt[i, 0] := 0;

for j := 1 to n     Opt[0,j] := 0;

Opt[0,0] := 0;

for i := 1 to m

for j := 1 to n

if A[i] = B[j]  {  Opt[i,j] := 1 + Opt[i-1,j-1];  Best[i,j] := Diag; }

else if Opt[i-1, j] >= Opt[i, j-1]

{  Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }

else        {  Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }
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Algorithm Performance

• O(nm) time and O(nm) space
• On current desktop machines

– n, m < 10,000 is easy
– n, m > 1,000,000 is prohibitive

• Space is more likely to be the bounding 
resource than time

Observations about the Algorithm

• The computation can be done in O(m+n) 
space if we only need one column of the 
Opt values or Best Values

• The algorithm can be run from either end 
of the strings

Computing LCS in O(nm) time and 
O(n+m) space

• Divide and conquer algorithm
• Recomputing values used to save space

Divide and Conquer Algorithm

• Where does the best path cross the 
middle column?

• For a fixed i, and for each j, compute the 
LCS that has ai matched with bj

Constrained LCS

• LCSi,j(A,B):  The LCS such that
– a1,…,ai paired with elements of b1,…,bj

– ai+1,…am paired with elements of bj+1,…,bn

• LCS4,3(abbacbb, cbbaa)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS5,0(A,B), LCS5,1(A,B),…,LCS5,9(A,B)
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A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS5,0(A,B), LCS5,1(A,B),…,LCS5,9(A,B)

049
148
137
236
235
334
323
312
411
400
rightleftj

Computing the middle column

• From the left, compute LCS(a1…am/2,b1…bj)
• From the right, compute LCS(am/2+1…am,bj+1…bn)
• Add values for corresponding j’s

• Note – this is space efficient

Divide and Conquer

• A = a1,…,am B = b1,…,bn

• Find j such that 
– LCS(a1…am/2, b1…bj) and
– LCS(am/2+1…am,bj+1…bn) yield optimal solution

• Recurse

Algorithm Analysis

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm

Prove by induction that 
T(m,n) <= 2cmn Memory Efficient LCS Summary

• We can afford O(nm) time, but we can’t 
afford O(nm) space

• If we only want to compute the length of 
the LCS, we can easily reduce space to 
O(n+m)

• Avoid storing the value by recomputing
values
– Divide and conquer used to reduce problem 

sizes
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Shortest Path Problem

• Dijkstra’s Single Source Shortest Paths 
Algorithm
– O(mlog n) time, positive cost edges

• General case – handling negative edges
• If there exists a negative cost cycle, the 

shortest path is not defined
• Bellman-Ford Algorithm

– O(mn) time for graphs with negative cost 
edges

Lemma

• If a graph has no negative cost cycles, 
then the shortest paths are simple paths

• Shortest paths have at most n-1 edges

Shortest paths with a fixed number 
of edges

• Find the shortest path from v to w with 
exactly k edges

Express as a recurrence

• Optk(w) = minx [Optk-1(x) + cxw]
• Opt0(w) = 0 if v=w and infinity otherwise 

Algorithm, Version 1

foreach w

M[0, w] = infinity;

M[0, v] = 0;

for i = 1 to n-1

foreach w

M[i, w] = minx(M[i-1,x] + cost[x,w]);


