CSE 421
Algorithms

Richard Anderson
Lecture 20

Memory Efficient Longest Common
Subsequence

Longest Common Subsequence

* C=c;...cy is a subsequence of A=a;...a,, if
C can be obtained by removing elements
from A (but retaining order)

* LCS(A, B): A maximum length sequence
that is a subsequence of both A and B
ocurranec attacggct

occurrence tacgacca

LCS Optimization

« A=aa,...a,
* B=b;b,...b,

* Opt[j, K] is the length of
LCS(a,a,...a;, byb,...by)

Optimization recurrence

Ifa;=b,, Opt[jk]=1+Opt[j1,k-1]

If a 1= by, Opt[j,K] = max(Opt] j-1,K], Opt] j,k-1])

Dynamic Programming

Computation
%%
%Y
%Y
%Y
%Y
ST

Storing the path information

Al1.m], B[1..n] <
Q
fori:=1tom Optfi, 0] := 0; B
o
forj:=1ton Opt[0,j] := 0;

Opt[0,0] := 0;

fori:z=1tom

a,...a,

forj:==1ton
if Ali] = B[j] { Opt[i,j] := 1 + Opti-1,j-1]; Best[i,j] := Diag; }
else if Optfi-1, j] >= Optfi, j-1]
{ Optli, j] := Opt[i-1, j], Best[i,j] := Left; }
else { Optli, j] := Opti, j-1], Best[i,j] := Down; }

Algorithm Performance

* O(nm) time and O(nm) space
» On current desktop machines
—n, m < 10,000 is easy
—n, m> 1,000,000 is prohibitive

» Space is more likely to be the bounding
resource than time

Observations about the Algorithm

» The computation can be done in O(m+n)
space if we only need one column of the
Opt values or Best Values

* The algorithm can be run from either end
of the strings

Computing LCS in O(nm) time and
O(n+m) space

+ Divide and conquer algorithm

* Recomputing values used to save space

Divide and Conquer Algorithm

* Where does the best path cross the
middle column? -

» For afixed i, and for each j, compute the
LCS that has a; matched with b

Constrained LCS

* LCS;(A,B): The LCS such that
—ay,...,a, paired with elements of by, ..., b.

* LCS, ;(abbacbb, cbbaa)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS; o(A,B), LCS;4(A,B),...,LCS5 o(A,B)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCSs o(A,B), LCSs 4(A,B),...,LCS5 4(A,B)

left | right
0

olo(N|lola|b|lw|N|a|o|—
Bl lw|lw|w|w|[Np[=a]=

Computing the middle column

* From the left, compute LCS(a;...ay,,b;...b;)
* From the right, compute LCS(ap41- - -8, Dj41---bp)
» Add values for corresponding j's

» Note — this is space efficient

Divide and Conquer

 Find j such that
—LCS(ay...ay; by...b) and
—LCS(anp41---8mjs1---by) yield optimal solution

* Recurse

Algorithm Analysis

* T(m,n) =T(m/2, j) + T(m/2, n-j) + cnm

Prove by induction that
T(m,n) <= 2cmn

Memory Efficient LCS Summary

* We can afford O(nm) time, but we can't
afford O(nm) space

« |f we only want to compute the length of
the LCS, we can easily reduce space to
O(n+m)

» Avoid storing the value by recomputing
values

— Divide and conquer used to reduce problem
sizes

Shortest Path Problem

Dijkstra’s Single Source Shortest Paths
Algorithm

— O(mlog n) time, positive cost edges
General case — handling negative edges
If there exists a negative cost cycle, the
shortest path is not defined
Bellman-Ford Algorithm

— O(mn) time for graphs with negative cost

edges

Lemma

« If a graph has no negative cost cycles,
then the shortest paths are simple paths

» Shortest paths have at most n-1 edges

Shortest paths with a fixed number
of edges

* Find the shortest path from v to w with
exactly k edges

Express as a recurrence

* Opty(w) = min, [Opt, 4(x) + ¢,
* Opty(w) = 0 if v=w and infinity otherwise

Algorithm, Version 1

foreach w

MIO, w] = infinity;
M[O, v] = 0;
fori=1ton-1

foreach w
MI[i, w] = min (M[i-1,x] + cost[x,w]);

