CSE 421 Algorithms

Richard Anderson Lecture 22 Network Flow

Outline

- · Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- · Maxflow-MinCut Theorem

Network Flow Definitions

- Capacity
- · Source, Sink
- · Capacity Condition
- · Conservation Condition
- Value of a flow

Flow Example

Flow assignment and the residual graph

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - $0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Augmenting Path Algorithm

- · Augmenting path
 - Vertices v_1, v_2, \dots, v_k
 - $v_1 = s, v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j=1 \dots k-1$

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - $-G_R$: edge e' from u to v with capacity c-f
 - $-G_R$: edge e" from v to u with capacity f

Augmenting Path Lemma Let P = v₁, v₂, ..., v_k be a path from s to t with minimum capacity b in the residual graph. b units of flow can be added along the path P in the flow graph.