CSE 421
Algorithms
Richard Anderson
Lecture 26
Network Flow Applications

Airplane Scheduling

- Given an airline schedule, and starting locations
for the planes, is it possible to use a fixed set of

Given an airline schedule, and starting locations
for the planes, is it possible to use a fixed set of planes to satisfy the schedule.

- Schedule
- [segments] Departure, arrival pairs (cities and times)
- Approach
- Construct a circulation problem where paths of flow give segments flown by each plane

Today's topics

- More network flow reductions
- Airplane scheduling
- Image segmentation
- Baseball elimination

Example

- Seattle->San Francisco, 9:00-11:00
- Seattle->Denver, 8:00-11:00
- San Francisco -> Los Angeles, 13:00-14:00
- Salt Lake City -> Los Angeles, 15:00-17:00
- San Diego -> Seattle, 17:30-> 20:00
- Los Angeles -> Seattle, 18:00->20:00
- Flight times:
- Denver->Salt Lake City, 2 hours
- Los Angeles->San Diego, 1 hour

Graph representation

- Each segment, S_{i}, is represented as a pair of vertices ($\mathrm{d}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}$, for departure and arrival), with an edge between them.

- Add an edge between a_{i} and d_{j} if S_{i} is compatible with S_{j}.

Result

- The planes can satisfy the schedule iff there is a feasible circulation

Image analysis

- a_{i} : value of assigning pixel i to the foreground
- b_{i} : value of assigning pixel i to the background
- $p_{i j}$: penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A, B)=\Sigma_{\{i \text { in } A\}} a_{i}+\Sigma_{\{j \text { in } B\}} b_{j}-\Sigma_{\{\{i, j)}$ in, i in A, j in $\left.B\right\} \mathrm{P}_{\mathrm{ij}}$

Pixel graph to flow graph

(1)

Baseball elimination

- Can the Fruit Flies win the league?
- Remaining games:
- AC, AD, AD, AD, AF, $B C, B C, B C, B C, B C$, $B D, B E, B E, B E, B E$, BF, CE, CE, CE, CF, CF, DE, DF, EF, EF

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dinosaurs	14	13
Earthworms	14	10
Fruit Flies	12	15

Remaining games

$A C, A D, A D, A D, B C, B C, B C, B C, B C, B D, B E, B E, B E, B E, C E, C E, C E, D E$
(s)

(A)
(B)

> (c)
(D)
(E)
(T)

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
- Ants (2)
- Bees (3)
- Cockroaches (3)
- Dinosaurs (5)
- Earthworms (5)
- 18 games to play
- AC, AD, AD, AD, BC, BC, $A C, A D, A D, A D, B C, B C$,
$B C, B C, B C, B D, B E, B E$, $B C, B C, B C, B D, B E, B E$,
$B E, B E, C E, C E, C E, D E$

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dinosaurs	14	14
Earthworms	14	12
Fruit Flies	19	15

- Can the Dinosaurs win the league?
- Remaining games:
- AB, AC, AD, AD, AD, $B C, B C, B C, B D, C D$

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dinosaurs	1	5

\qquad

