CSE 421 Algorithms

Richard Anderson Lecture 26 Network Flow Applications

Today's topics

- · More network flow reductions
 - Airplane scheduling
 - Image segmentation
 - Baseball elimination

Airplane Scheduling

- Given an airline schedule, and starting locations for the planes, is it possible to use a fixed set of planes to satisfy the schedule.
- Schedule
 - [segments] Departure, arrival pairs (cities and times)
- Approach
 - Construct a circulation problem where paths of flow give segments flown by each plane

Example

- Seattle->San Francisco, 9:00 11:00
- Seattle->Denver, 8:00 11:00
- San Francisco -> Los Angeles, 13:00 14:00
- Salt Lake City -> Los Angeles, 15:00-17:00
- San Diego -> Seattle, 17:30-> 20:00
- Los Angeles -> Seattle, 18:00->20:00
- Flight times:
- Denver->Salt Lake City, 2 hours
- Los Angeles->San Diego, 1 hour

Can this schedule be full filled with two planes, starting from Seattle?

Compatible segments

- Segments S₁ and S₂ are compatible if the same plane can be used on S₁ and S₂
 - End of $S_{\rm 1}$ equals start of $S_{\rm 2},$ and enough time for turn around between arrival and departure times
 - End of S₁ is different from S₂, but there is enough time to fly between cities

Graph representation Each segment, S_i, is represented as a pair of vertices (d_i, a_i, for departure and arrival), with an edge between them. (a) (a) (a) Add an edge between a_i and d_j if S_i is compatible with S_i.

 $(a_i) \longrightarrow (d_j)$

P

Network flow applications summary

- Bipartite Matching
- Disjoint Paths
- Airline Scheduling
- Survey Design
- Baseball Elimination
- Project Selection
- Image Segmentation