CSE 421 Algorithms

Richard Anderson Lecture 27 NP Completeness

Announcements

- Final Exam
 - Monday, December 11, 2:30-4:20 pm
 - · Closed book, closed notes
 - Practice final and answer key available
- HW 9, due Friday, 1:30 pm
- · This week's topic
 - NP-completeness
 - Reading: 8.1-8.8: Skim the chapter, and pay more attention to particular points emphasized in class
 - It will be on the final

Algorithms vs. Lower bounds

- · Algorithmic Theory
 - What we can compute
 - I can solve problem X with resources R
 - Proofs are almost always to give an algorithm that meets the resource bounds
- · Lower bounds
 - How do we show that something can't be done?

Theory of NP Completeness

The Universe

Polynomial Time

- P: Class of problems that can be solved in polynomial time
 - Corresponds with problems that can be solved efficiently in practice
 - Right class to work with "theoretically"

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where "yes" instances have polynomial time checkable certificates

Decision Problems

- Theory developed in terms of yes/no problems
 - Independent set
 - Given a graph G and an integer K, does G have an independent set of size at least K
 - Vertex cover
 - Given a graph G and an integer K, does the graph have a vertex cover of size at most K.

Certificate examples

- · Independent set of size K
 - The Independent Set
- · Satifisfiable formula
 - Truth assignment to the variables
- · Hamiltonian Circuit Problem
 - A cycle including all of the vertices
- · K-coloring a graph
 - Assignment of colors to the vertices

Polynomial time reductions

- · Y is Polynomial Time Reducible to X
 - Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
 - Notations: Y <_P X

Lemma

 Suppose Y <_P X. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Lemma

 Suppose Y <_P X. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

- · A problem X is NP-complete if
 - X is in NP
 - For every Y in NP, $Y <_P X$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and X <_P Z
 - Then Z is NP-Complete

Cook's Theorem

· The Circuit Satisfiability Problem is NP-Complete

Garey and Johnson

History

- Jack Edmonds
 - Identified NP
- Steve Cook
 - Cook's Theorem NP-Completeness
- Dick Karp
 - Identified "standard" collection of NP-Complete Problems
- · Leonid Levin
 - Independent discovery of NP-Completeness in USSR

Populating the NP-Completeness Universe

- Circuit Sat <_P 3-SAT
- 3-SAT <_P Independent Set
- Independent Set <_P Vertex Cover
- 3-SAT <_P Hamiltonian Circuit
- Hamiltonian Circuit <_P Traveling Salesman
- 3-SAT <_P Integer Linear Programming
- 3-SAT <_P Graph Coloring
 3-SAT <_P Subset Sum
- Subset Sum <_P Scheduling with Release times and deadlines

Sample Problems

- · Independent Set
 - Graph G = (V, E), a subset S of the vertices is independent if there are no edges between vertices in S

Vertex Cover

- Vertex Cover
 - Graph G = (V, E), a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S

