CSE 421 Algorithms

Richard Anderson Lecture 28 NP-Completeness

Populating the NP-Completeness Universe

- Circuit Sat <_P 3-SAT
- 3-SAT <_P Independent Set
- 3-SAT <_P Vertex Cover
- Independent Set <p Clique
- 3-SAT <_P Hamiltonian Circuit
- Hamiltonian Circuit <_P Traveling Salesman
- 3-SAT <_P Integer Linear Programming
- 3-SAT <p Graph Coloring
- 3-SAT <_P Subset Sum
- Subset Sum <_p Scheduling with Release times and deadlines

Cook's Theorem

- The Circuit Satisfiability Problem is NP-Complete
- Circuit Satisfiability
 - Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Proof of Cook's Theorem

- · Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

Satisfiability

 Given a boolean formula, does there exist a truth assignment to the variables to make the expression true

Definitions

- Boolean variable: $x_1, ..., x_n$
- Term: x_i or its negation !x_i
- · Clause: disjunction of terms
 - $-t_1$ or t_2 or ... t_i
- Problem:
 - Given a collection of clauses C_1, \ldots, C_k , does there exist a truth assignment that makes all the clauses true
 - $-(x_1 \text{ or } !x_2), (!x_1 \text{ or } !x_3), (x_2 \text{ or } !x_3)$

3-SAT

- · Each clause has exactly 3 terms
- Variables x₁, . . ., x_n
- Clauses C₁, ..., C_k
 C_i = (t_{i1} or t_{i2} or t_{i3})
- j (- j i - j 2 - j 3)
- Fact: Every instance of SAT can be converted in polynomial time to an equivalent instance of 3-SAT

Find a satisfying truth assignment

 $(x \mid\mid y \mid\mid z) \;\&\& \; (!x \mid\mid !y \mid\mid !z) \;\&\& \; (!x \mid\mid y) \;\&\& \; (x \mid\mid !y) \;\&\& \; (y \mid\mid !z) \;\&\& \; (!y \mid\mid z)$

Theorem: CircuitSat <p 3-SAT

Theorem: 3-SAT <_P IndSet

Sample Problems

- · Independent Set
 - Graph G = (V, E), a subset S of the vertices is independent if there are no edges between vertices in S

Vertex Cover

- Vertex Cover
 - Graph G = (V, E), a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S

IS <_P VC

- Lemma: A set S is independent iff V-S is a vertex cover
- To reduce IS to VC, we show that we can determine if a graph has an independent set of size K by testing for a Vertex cover of size n - K

$IS <_{P} Clique$

- Lemma: S is Independent in G iff S is a Clique in the complement of G
- To reduce IS to Clique, we compute the complement of the graph. The complement has a clique of size K iff the original graph has an independent set of size K

Hamiltonian Circuit Problem

 Hamiltonian Circuit – a simple cycle including all the vertices of the graph

Thm: Hamiltonian Circuit is NP Complete

· Reduction from 3-SAT

Traveling Salesman Problem

 Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

