

Extra Slides

43

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a

method to pay amount to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest

value that does not take us past the amount to be paid.

Ex: $2.89.

44

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest

value that does not take us past the amount to be paid.

Q. Is cashier's algorithm optimal?

Sort coins denominations by value: c1 < c2 < � < cn.

S ← φ

while (x ≠ 0) {

 let k be largest integer such that ck ≤ x

 if (k = 0)

 return "no solution found"

 x ← x - ck

 S ← S ∪ {k}

}

return S

coins selected

45

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100.

Pf. (by induction on x)
■ Consider optimal way to change ck ≤ x < ck+1 : greedy takes coin

k.
■ We claim that any optimal solution must also take coin k.

� if not, it needs enough coins of type c1, �, ck-1 to add up to x

� table below indicates no optimal solution can do this
■ Problem reduces to coin-changing x - ck cents, which, by

induction, is optimally solved by greedy algorithm. �

1

ck

10

25

100

P ≤ 4

All optimal solutions
must satisfy

N + D ≤ 2

Q ≤ 3

5 N ≤ 1

no limit

k

1

3

4

5

2

-

Max value of coins
1, 2, �, k-1 in any OPT

4 + 5 = 9

20 + 4 = 24

4

75 + 24 = 99

46

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal

denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
■ Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
■ Optimal: 70, 70.

Selecting Breakpoints

48

Selecting Breakpoints

Selecting breakpoints.
■ Road trip from Princeton to Palo Alto along fixed route.
■ Refueling stations at certain points along the way.
■ Fuel capacity = C.
■ Goal: makes as few refueling stops as possible.

Greedy algorithm. Go as far as you can before refueling.

Princeton Palo Alto

1

C

C

2

C

3

C

4

C

5

C

6

C

7

49

Truck driver's algorithm.

Implementation. O(n log n)
■ Use binary search to select each breakpoint p.

Selecting Breakpoints: Greedy Algorithm

Sort breakpoints so that: 0 = b0 < b1 < b2 < ... < bn = L

S ← {0}

x ← 0

while (x ≠ bn)

 let p be largest integer such that bp ≤ x + C

 if (bp = x)

 return "no solution"

 x ← bp

 S ← S ∪ {p}

return S

breakpoints selected

current location

50

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
■ Assume greedy is not optimal, and let's see what happens.
■ Let 0 = g0 < g1 < . . . < gp = L denote set of breakpoints chosen by

greedy.
■ Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints in an optimal

solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: g r+1 > fr+1 by greedy choice of algorithm.

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr

why doesn't optimal

solution drive a little

further?

gr+1

fr+1

51

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
■ Assume greedy is not optimal, and let's see what happens.
■ Let 0 = g0 < g1 < . . . < gp = L denote set of breakpoints chosen by

greedy.
■ Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints in an optimal

solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.

■ Note: gr+1 > fr+1 by greedy choice of algorithm.

another optimal solution has
one more breakpoint in common

⇒ contradiction

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr

gr+1

52

Edsger W. Dijkstra

The question of whether computers can think is like
the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a
ripple on the surface of our culture. In their capacity

as intellectual challenge, they are without precedent
in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching
should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is

the language of the future for the programming
techniques of the past: it creates a new generation
of coding bums.

