Divide-and-Conquer

Divide-and-conquer.
. Break up problem into several parts.
. Solve each part recursively.
« Combine solutions to sub-problems into overall solution.

Chapter 5

Divide and Conquer

Most common usage.
. Break up problem of size n into two equal parts of size 3n.
. Solve two parts recursively.
. Combine two solutions into overall solution in linear time.

Consequence.
. Brute force: n?.
N . Divide-and-conquer: nlogn. Divide et impera.
e Veni, vidi, vici.
Wesley - Julius Caesar
Sorting
51 Mer‘gesor"l‘ Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications. Non-obvious sorting applications.
List files in a directory. Data compression.
Organize an MP3 library. Computer graphics.
List names in a phone book. Interval scheduling.
Display Google PageRank Computational biology.
results. Minimum spanning tree.

Supply chain management.

Problems become easier once Simulate a system of

sorted. particles.
Find the median. Book recommendations on
Find the closest pair. Amazon.
Binary search ina Load balancing on a parallel
database. computer.
Identify statistical
outliers.
Find duplicates in a mailing
list 4




Mergesort

Mergesort.
. Divide array info two halves.
. Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

AL G O R I T H M s

A L G O R I T H[M[|s diide 0OQ)

A G L O R H 1 m[s [T sort 2T(n/2)
A G H I L M O R S T merge  O(n)

Merging

Merging. Combine two pre-sorted lists into a sorted whole.
How to merge efficiently? E

. Linear number of comparisons.
. Use temporary array.

REEEION R RGO s T
A c 1 1 B

Challenge for the bored. In-place merge. [Kronrud, 1969]
!

using only a constant amount of extra storage

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.
if n=1

0

T <4 T(n/2]) + T(ln/2]) + n othewise
—_— .
solveleft half solveright half ~ Merging

Solution. T(n) = O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume nh is a power of 2 and replace < with =.

Proof by Recursion Tree

0 if n=1
T(n) = 2T(n/2) + n  otherwise
— =
sorting both halves  merging

T(n) n
T(n/2) T(n/2) 2(n/2)
T(n/4) T(n/4) T(n/4) T(n/4) 4(n/4)
log,n
2%(n/ 2K)
T(2) T(2) TR) TR) T@) TR TR T@ n/2(2)

nlog,n




Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
t

assumes n is a power of 2
0 if n=1
T(n) = 2T(n/2) + n  otherwise
— =
sorting both halves  merging

Pf. Forn>1: ) _ 2T(n/2)
n n

T(n/2)
n/2

T(n/4)
n/4

+1

+1

+1+1

T(n/n)
n/n

+1++1

logyn
= logyn

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
t

assumes n is a power of 2
0 if n=1
T(n) = 2T(n/2) + n  otherwise
—— =
sorting both halves  merging

Pf. (by induction on n)

. Basecase: n=1.

« Inductive hypothesis: T(n)= nlog, n.
. Goal: show that T(2n) = 2n log, (2n).

T(2n) = 2T(n) + 2n
= 2nlogyn + 2n
= 2n(logy(2n)-1) + 2n
= 2nlog,(2n)

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) <nllignl.
t
0 if n=1 logzn
T(n) < T(|—n/2‘|) + T(ln/2]) + n  othewise
_— =
solvelefthalf  solverighthaf ~Mer9ing

Pf. (by induction on n)
. Basecase: n=1.
. Defineny=ln/2], ny=[n/21
. Induction step: assume true forl,2, ..., n-1.

T < T(n) + T(ny) + n n, = [n/2]
< nflgn |+ nfign,]+ n < 1,2
< nflgn, |+ nflgn, ]+ n i
= n[lgn, ]+ n = 22
n([lgn]-1) + n = Ign, <[lgn] -1

1A

n|_lgn-|

5.3 Counting Inversions




Counting Inversions

Music site tries o match your song preferences with others.
. You rank n songs.
. Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
« Myrank: 1,2, .., n.
. Your rank: ay, gy, .., G,

- Songsiand jinverted if i< j, but ;> a;.

Songs
[ 48 [ c oD ]E]
B : 2 3 4 5
You 1 3 4 2 5
[ =]

Brute force: check all ©(n?) pairs i and j.

Inversions
3-2,4-2

Applications

Applications.
. Voting theory.
. Collaborative filtering.
« Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
. Rank aggregation for meta-searching on the Web.
. Nonparametric statistics (e.g., Kendall's Tau distance).

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1 5 4 8 102 6 9 12 11 3 7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

HERCNEE BEEanan




Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
. Conquer: recursively count inversions in each half.

1 5 4 8 10 2 6 9 1211 3 7 Divide: O(1).
DOODNE OOENaE o oo
5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7, 12-11, 11-3, 11-7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
. Conquer: recursively count inversions in each half.
. Combine: count inversions where a; and a;are in different halves,
and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).
DOODNE OOENEE - oo

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions Combine: 77?

5-3,4-3,8-6, 8-3,8-7,10-6, 10-9, 10-3,10-7

Total=5+8+9=22.

Counting Inversions: Combine

Combine: count blue-green inversions
. Assume each half is sorted. E
- Count inversions where g; and q; are in different halves.
« Merge two sorted halves into sorted whole.

to maintain sorted invariant

BEODOE BODGDD
6 3 2 2 0 0
13 blue-green inversions: 6+3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

T(n) < T(Ln/2])+T([n/2])+0(n) = T(n)=0O(nlogn)

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(r oA) « Sort-and-Count(A)

(r s B) « Sort-and-Count(B)

(r ,L) « Merge-and-Count(A, B)

return  r=r , +r g +rand the sorted list L




5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.

. Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
. Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems
Brute force. Check all pairs of points p and q with ©(n?) comparisons.
1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

f

to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

° L . .
° ° °
°
° . °. A
° . ° o .
°
o ° ° o o
°
° ° ° A
L]

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

° °
I
:. L .. L]
L] L] °
° o © K
°
e .. ° o
o ° o .: °
° ° .

® o, ° o ©

° °




Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.
. Conguer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.
. Conquer: find closest pair in each side recursively.
. Combine: find closest pair with one point in each side. - seems like o(n*)
. Return best of 3 solutions.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

3= min(12, 21)




Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.
. Observation: only need to consider points within & of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < &.
. Observation: only need to consider points within & of line L.

. Sort points in 25-strip by their y coordinate.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.
. Observation: only need to consider points within 3 of line L.

. Sort points in 25-strip by their y coordinate.

. Only check distances of those within 11 positions in sorted list!

5 = min(12, 21)

4 = min(12, 21)
12 . o -
° o °
o
Closest Pair of Points
Def. Let s; be the point in the 23-strip, with
the ith smallest y-coordinate.
XX
Claim. If |i- jl 212, then the distance between ©- |
s;and s; is at least &. o
Pf.
- No two points lie in same 33-by-33 box.
. Two points at least 2 rows apart 35
have distance 2 2(£3). « 2 rows
(39) ° ) 15
. . . (.17 @ 33
Fact. Still true if we replace 12 with 7.
®
®
(XX )




Closest Pair Algorithm

Closest-Pair(p 1oea P i
Compute separation line L such that half the points O(n log n)
are on one side and half on the other side.

3, = Closest-Pair(left half) 2Ttn/ 2
3, = Closest-Pair(right half) /2
3 =min( &, )

Delete all points further than d from separation line L Oo(n)

Sort remaining points by y-coordinate. O(n log n)
Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these O(m

distances is less than 8, update 3

return &

Closest Pair of Points: Analysis

Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(nlog®n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
. Each recursive returns two lists: all points sorted by y coordinate,
and all points sorted by x coordinate.
. Sort by merging two pre-sorted lists.

T(n) < 2T(n/2) + O(n) = T(n) = O(nlogn)

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.
. O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a x b.
. Brute force solution: ©(n?) bit operations.
11010101
*01111101
110101010
000000000

Multiply
110101010
110101010
1t 1 1 1 1 1 0 1 110101010
1 1 0 1 0 1t O 1 110101010
+ 0 1 1 1 1 1 O 110101010
1 0 1 0 1 O O 1 O 000000000

Add 01101000000000010




Divide-and-Conquer Multiplication: Warmup

To multiply fwo n-digit integers:
. Multiply four n-digit integers.
. Add two 3n-digit integers, and shift to obtain result.

x = 20 + X
= 2", + y,
W= @00t %) (V20 + o) = 2°Bays + 22 Yot Xol) + XoYo

T(n) = 4T(/2) + ©() = T(n)=6(n)

recursive calls add, shift

!

assumes n is a power of 2

Karatsuba Multiplication

To multiply fwo n-digit integers:

. Add two %n digit integers.

- Multiply three zn-digit integers.

. Add, subtract, and shift $n-digit integers to obtain result.

x = 220 + %,

y =2 Oy +

o= 2'0ay + 2" Yot XoY) + %Yo

= 200y, + 2" %) (Y +Yo) = X Ya~XoYo) + XoYo
A B A c @

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers
in O(n'585) bit operations.

1) < T(ln/2]) + T(Inr2]) + T(2+ni2]) + oM

recursive calls add, subtract, shift
= T(n) = O(N'?%) = O(n***)

Karatsuba: Recursion Tree

_ 0 if n=1 logn (g)oon _q
T(n) —{ T(n/2) + n othenvise T(n)= é n (%)k =n (2)1% = = 33 _p
T(n) n
T(n/2) T(n/2) T(n/2) 3(n/2)

NN N

T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) 9(n/4)

T(n/ 2% 3k(n/ 2%

T@) TR TR T@) T(2) TR) TE@) T(Q) 319n(2)

Matrix Multiplication




Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

. G G v Gy a a8, oA, b, b, - b,

6 =2ab, E T N
k=1 H H . H H H . H H H . H

Gu Go v Gul L8y @, - @] b b, b,

Brute force. ©(n3) arithmetic operations.

Fundamental question. Can we improve upon brute force?

Matrix Multiplication: Warmup

Divide-and-conquer.

. Divide: partition A and B into $h-by-3n blocks.

. Conquer: multiply 8 2n-by-2n recursively.

» Combine: add appropriate products using 4 matrix additions.

Cu Co|_ A1 Az|, |Bu Be Cu = (AuxBu)+ (A2xBy)
Ca Cal lAn AollBy By Co = (AuxBu)+ (AuxBy)
Cy = (A21XB11)+ (Azszn)
Cp = (Azlelz) + (Azszzz)

T(n)= 8T(n/2) + o(n?) = T(n)=6(n®

— N
recursive calls add, form submatrices

42

Matrix Multiplication: Key Idea
Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

[% c’z}zﬁl A’ZHB” B”} R = Ayx(By-By)

Cu Cyp An Apl LBx By B o= (A+Ay)xB,,

Po= (Ayt+Ay)xBy

Cy = R+R-RB+R Py = Aypx(B,-By)
C, = R+R R = (AutAp)*x(By+By)
Cy = RB+R B = (Ax=Ap)*x(By+By)
C» = R+R-B-PR Po= (Ag—An)x(BytBp)

. 7 multiplications.
. 18 =10 + 8 additions (or subtractions).

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)

. Divide: partition A and B into $h-by-3n blocks.

. Compute: 14 n-by-4n matrices via 10 matrix additions.

. Conquer: multiply 7 $n-by-3n matrices recursively.

. Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
« Assume n is a power of 2.
. T(n) = # arithmetic operations.

T()= 7T(/2)+ ©Mn%) = T(n)=6(n"%*")=0n")

[N SR
recursive calls add, subtract




Fast Matrix Multiplication in Practice

Implementation issues.
. Sparsity.
. Caching effects.
« Numerical stability.
. Odd matrix dimensions.
. Crossover to classical algorithm around n = 128.

Common misperception: "Strassen is only a theoretical curiosity."
. Advanced Computation Group at Apple Computer reports 8x speedup
on G4 Velocity Engine when n ~ 2,500.
. Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other
matrix ops.

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?

A. Yes! [Strassen, 1969] o(n'*%7y=0(n>*)
Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]

O(n "¢ = O(n>*)

. Two 3-by-3 matrices with only 21 scalar multiplications?
. Also impossible. o(n'*%2) =O(n?")

>0

Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980] e(nmmmm):o(nzaa)
Decimal wars.

. December, 1979: O(n2521813),

. Janhuary, 1980:  O(n2521801),

46

Fast Matrix Multiplication in Theory

Best known. O(n2376) [Coppersmith-Winograd, 1987.]
Conjecture. O(n?*) for any € > 0.

Caveat. Theoretical improvements to Strassen are progressively less
practical.




