

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
. Solve each part recursively
. Combine solutions to sub-problems into overall solution

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2} n$.
. Solve two parts recursively
. Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n^{2}.
- Divide-and-conquer: $n \log n$.

```
Divide et impera.
Vivide et impera
```

- Julius Caesar

5.1 Mergesort

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications
List files in a directory.
Organize an MP3 library List names in a phone book. Display Google PageRank results.

Problems become easier once sorted.

Find the median.
Find the closest pair.
Binary search in a
database.
Identify statistical
outliers.
Find duplicates in a mailing
list

Non-obvious sorting applications Data compression. Computer graphics Interval scheduling Computational biology. Minimum spanning tree. Supply chain management. Simulate a system of particles.
Book recommendations on Amazon.
Load balancing on a parallel computer.

Merging

Merging. Combine two pre-sorted lists into a sorted whole.
How to merge efficiently?

- Linear number of comparisons.
. Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969] \dagger
using only a constant amount of extra storage

A Useful Recurrence Relation

Def. $T(n)=$ number of comparisons to mergesort an input of size n.

Mergesort recurrence.

```
T(n)\leq{{}\begin{array}{ll}{0}&{\mathrm{ if }n=1}\\{\mp@subsup{\underbrace}{\mathrm{ solve left half }}{T(\lceiln/2\rceil)}+\mp@subsup{\underbrace}{\mathrm{ solve right half }}{T(\lfloorn/2\rfloor)}+\mp@subsup{\underbrace}{\mathrm{ merging }}{n}\mathrm{ otherwise}}
```

Solution. $T(n)=O\left(n \log _{2} n\right)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with $=$.

Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
$\stackrel{\dagger}{\text { assumes } n \text { is a power of } 2}$

```
T(n)={}{\begin{array}{ll}{0}&{\mathrm{ if }n=1}\\{\mp@subsup{\underbrace}{}{2T(n/2)}+\mp@subsup{\underbrace}{}{n}}&{\mathrm{ otherwise }}
sorting both halves merging
```

Pf. For $n>1$:

$$
\begin{array}{rll}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n} & +1 \\
& =\frac{T(n / 2)}{n / 2} & +1 \\
& =\frac{T(n / 4)}{n / 4} & +1+1 \\
& \cdots & \\
& =\frac{T(n / n)}{n / n} & +\underbrace{1+\cdots+1}_{\log _{2} n} \\
& =\log _{2} n &
\end{array}
$$

Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.

assumes n is a power of 2

```
T(n)={}\begin{array}{ll}{0}&{\mathrm{ if }n=1}\\{2T(n/2) + n}&{\mathrm{ otherwise }}
ting both halves mergin
```

Pf. (by induction on n)

- Base case: $n=1$
- Inductive hypothesis: $T(n)=n \log _{2} n$
- Goal: show that $T(2 n)=2 n \log _{2}(2 n)$.

Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\lg n\rceil$.
5.3 Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
. Music site consults database to find people with similar tastes.
Similarity metric: number of inversions between two rankings.
- My rank: $1,2, \ldots, n$.
- Your rank: $a_{1}, a_{2}, \ldots, a_{n}$
. Songs i and j inverted if $i<j$, but $a_{i}>a_{j}$.

Brute force: check all $\Theta\left(n^{2}\right)$ pairs i and j

Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array
. Sensitivity analysis of Google's ranking function
. Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance)

Counting Inversions: Divide-and-Conquer

Divide-and-conquer

- Divide: separate list into two pieces.

5	4	8	10	2	6	9	12	11	3	7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

Divide: O(1)
$5-4,5-2,4-2,8-2,10-2 \quad 6-3,9-3,9-7,12-3,12-7,12-11,11-3,11-7$

Counting Inversions: Divide-and-Conquer

Divide-and-conquer

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_{i} and a_{j} are in different halves, and return sum of three quantities.

Counting Inversions: Combine

Combine: count blue-green inversions
. Assume each half is sorted.

- Count inversions where a_{i} and a_{j} are in different halves
- Merge two sorted halves into sorted whole.
λ to maintain sorted invariant

\section*{| 7 | 10 | 14 | 18 | 19 | | 2 | 11 | 16 | 17 | 23 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 25 | | | | | | | | | | |}

13 blue-green inversions: $6+3+2+2+0+0$

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted Post-condition. [Sort-and-Count] L is sorted

```
Sort-and-Count (L) {
    if list L has one element
        gist L has one element
    Divide the list into two halves A and B
    (ra, A) \leftarrow Sort-and-Count (A)
    (ra, A)}\leftarrow\mathrm{ Sort-and-Count (A)
    (x, )
    return r = ratr r + r and the sorted list I
```

$T(n) \leq T(\lfloor n / 2\rfloor)+T(\mid n / 2\rceil)+O(n) \quad \Rightarrow \mathrm{T}(n)=O(n \log n)$

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
. Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

- Special case of nearest neighbor, Euclidean MST, Voronoi.
${ }_{\text {fast closest pair inspired fast algorithms for these problems }}$
Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.
1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same \times coordinate

to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n / 4$ points in each piece

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$

- Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$

- Observation: only need to consider points within δ of line L.
- Sort points in 28-strip by their y coordinate.
. Only check distances of those within 11 positions in sorted list

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

Def. Let s be the point in the 2δ-strip, with the $i^{\text {th }}$ smallest y-coordinate.

Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ.
Pf.

- No two points lie in same $\frac{1}{2} \delta$-by- $\frac{1}{2} \delta$ box.
- Two points at least 2 rows apart have distance $\geq 2\left(\frac{1}{2} \delta\right)$.

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

Closest Pair of Points: Analysis

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate,
and all points sorted by x coordinate.
. Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

5.5 Integer Multiplication

Integer Arithmetic

Add. Given two n-digit integers a and b, compute $a+b$.

- $O(n)$ bit operations.

Multiply. Given two n-digit integers a and b, compute $a \times b$
. Brute force solution: $\Theta\left(n^{2}\right)$ bit operations.
$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}$

Add

Divide-and-Conquer Multiplication: Warmup
To multiply two n-digit integers:

- Multiply four $\frac{1}{2} n$-digit integers.
- Add two $\frac{1}{2} n$-digit integers, and shift to obtain result.

```
x= 2n/2}\cdot\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{
y=2 2n/2}\cdot\mp@subsup{y}{1}{}+\mp@subsup{y}{0}{
xy = (2n/2}\cdot\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{})(\mp@subsup{2}{}{n/2}\cdot\mp@subsup{y}{1}{}+\mp@subsup{y}{0}{})=\mp@subsup{2}{}{n}\cdot\mp@subsup{x}{1}{}\mp@subsup{y}{1}{}+\mp@subsup{2}{}{n/2}\cdot(\mp@subsup{x}{1}{}\mp@subsup{y}{0}{}+\mp@subsup{x}{0}{}\mp@subsup{y}{1}{})+\mp@subsup{x}{0}{}\mp@subsup{y}{0}{
```

```
T}(n)=\mp@subsup{\underbrace}{}{4T(n/2)}+\mp@subsup{\underbrace}{\mathrm{ add.s.tif}}{\Theta(n)}=>\textrm{T}(n)=\Theta(\mp@subsup{n}{}{2}
        \mathrm{ recursive calls aud, shift}
    \dagger
    assumes n is a power of 2
```


Karatsuba Multiplication

To multiply two n-digit integers

- Add two $\frac{1}{2} n$ digit integers.
- Multiply three $\frac{1}{2} n$-digit integers.
- Add, subtract, and shift $\frac{1}{2} n$-digit integers to obtain result.

```
x = 2n/2}\cdot\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{
y=2 2n/2}\cdot\mp@subsup{y}{1}{}+\mp@subsup{y}{0}{
xy = 2 '}\cdot\mp@subsup{x}{1}{}\mp@subsup{y}{1}{}+\mp@subsup{2}{}{n/2}\cdot(\mp@subsup{x}{1}{}\mp@subsup{y}{0}{}+\mp@subsup{x}{0}{}\mp@subsup{y}{1}{})+\mp@subsup{x}{0}{}\mp@subsup{y}{0}{
= 2n}\cdot\mp@subsup{2}{1}{n}\mp@subsup{y}{1}{\prime}+\mp@subsup{2}{}{n/2}\cdot((\mp@subsup{x}{1}{}+\mp@subsup{x}{0}{\prime})(\mp@subsup{y}{1}{\prime}+\mp@subsup{y}{0}{\prime})-\mp@subsup{x}{1}{\prime}\mp@subsup{y}{1}{}-\mp@subsup{x}{0}{\prime}\mp@subsup{y}{0}{\prime})+\underset{C}{c
```

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O\left(n^{1.585}\right)$ bit operations.

```
T(n)\leqT(\lfloorn/2\rfloor)+T(\lceiln/2\rceil)+T(1+\lceiln/2\rceil) + \Theta(n)
T T(n)=O(n}\mp@subsup{}{}{\mp@subsup{\operatorname{log}}{2}{}3})=O(\mp@subsup{n}{}{1.585}
```

Matrix Multiplication

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute $C=A B$.

Matrix Multiplication: Warmup

Divide-and-conquer

- Divide: partition A and B into $\frac{1}{2} n$-by- $\frac{1}{2} n$ blocks.
- Conquer: multiply $8 \frac{1}{2} n$-by $-\frac{1}{2} n$ recursively.
. Combine: add appropriate products using 4 matrix additions

```
lll}\mp@subsup{C}{11}{}\mp@subsup{C}{12}{
```

$C_{11}=\left(A_{11} \times B_{11}\right)+\left(A_{12} \times B_{21}\right)$
$C_{12}=\left(A_{11} \times B_{11}\right)+\left(A_{12} \times B_{21}\right)$
$C_{12}=\left(A_{11} \times B_{12}\right)+\left(A_{12} \times B_{22}\right)$
$C_{21}=\left(A_{21} \times B_{11}\right)+\left(A_{22} \times B_{21}\right)$
$C_{21}=\left(A_{21} \times B_{11}\right)+\left(A_{22} \times B_{21}\right)$
$C_{22}=\left(A_{21} \times B_{12}\right)+\left(A_{22} \times B_{22}\right)$

```
T(n)= 吾T(n/2)}+\mp@subsup{\underbrace}{}{\Theta(\mp@subsup{n}{}{2})
    \mathrm{ recursive calls}
```

Matrix Multiplication: Key Idea

Fast Matrix Multiplication

Fast matrix multiplication. (Strassen, 1969)

- Divide: partition A and B into $\frac{1}{2} n-$ by $-\frac{1}{2} n$ blocks.
- Compute: $14 \frac{1}{2} n$-by- $\frac{1}{2} n$ matrices via 10 matrix additions.
- Conquer: multiply $7 \frac{1}{2} n$-by- $-\frac{1}{2} n$ matrices recursively
- Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

- Assume n is a power of 2
- $T(n)=\#$ arithmetic operations


```
    \mathrm{ recurive calls }
```

```
    \mathrm{ recurive calls }
```

- $18=10+8$ additions (or subtractions)

Fast Matrix Multiplication in Practice

Implementation issues.

- Sparsity.
- Caching effects.
. Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n=128$.

Common misperception: "Strassen is only a theoretical curiosity."

- Advanced Computation Group at Apple Computer reports $8 x$ speedup on $G 4$ Velocity Engine when $n \sim 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" $A x=b$, determinant, eigenvalues, and other matrix ops.

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]

$$
\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971]

$$
\Theta\left(n^{\log _{2} 6}\right)=O\left(n^{2.59}\right)
$$

Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible
Q. Two 70 -by- 70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980]

$$
\Theta\left(n^{\log _{70} 143640}\right)=O\left(n^{2.80}\right)
$$

Decimal wars.

- December, 1979: $O\left(n^{2.521813}\right)$.
. January, 1980: $O\left(n^{2.521801}\right)$.

Fast Matrix Multiplication in Theory
Best known. $O\left(n^{2.376}\right)$ [Coppersmith-Winograd, 1987.]
Conjecture. $O\left(n^{2+\varepsilon}\right)$ for any $\varepsilon>0$.
Caveat. Theoretical improvements to Strassen are progressively less practical.

