Chapter 6

Dynamic Programming

JON KLEINBERG - EVA TARDOS

PEARSON
Addison
Wesley

6.8 Shortest Paths

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge
weights c,,,, find shortest path from node s to node t.

VW

allow negative weights

Ex. Nodes represent agents in a financial setting and c,,, is cost of
transaction in which we buy from agent v and sell immediately to w.

9

10
O
6
15 }

18
-16
16

1
6

3
8
20
7 44 U

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Shortest Paths: Negative Cost Cycles

Y
b

Observation. If some path from s to t contains a negative cost cycle,
there does not exist a shortest s-t path; otherwise, there exists one
that is simple.

Negative cost cycle.

c(W)<0

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest v-t path P using at most i edges.

. Case 1: P uses af most i-1 edges.
- OPT(i, v) = OPT(i-1, v)

. Case 2: P uses exactly i edges.
- if (v, w) is first edge, then OPT uses (v, w), and then selects best
w-1 path using at most i-1 edges

0 if i=0
OPT(i,v) = { min{OPT(i-l v), min {OPT(i-1 W)+cw,}} otherwise
(v,w)OE

Remark. By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

Shortest Paths: Implementation

Shortest-Path(G t) {
foreach node v O V

MO, V] « o
MO, t] « O
for i =1ton-1

foreach node v OV
Mi, vl « Mi-1, v]
foreach edge (v, w OE
Mi, v « min{ Mi, vl, Mi-1, w + c,,}

Analysis. ©(mn) time, ©(n?) space.

Finding the shortest paths. Maintain a "successor" for each table
entry.

Shortest Paths: Practical Improvements

Practical improvements.
. Maintain only one array M[v] = shortest v-1 path that we have
found so far.
. No need to check edges of the form (v, w) unless M[w] changed
in previous iteration.

Theorem. Throughout the algorithm, M[v] is length of some v-t path,
and after i rounds of updates, the value M[v] is no larger than the length
of shortest v-t path using < i edges.

Overall impact.
. Memory: O(m +n).
« Running time: O(mn) worst case, but substantially faster in practice.

Bellman-Ford: Efficient Implementation

Push- Based- Shortest-Path(G s, t) {
foreach node v O V {
MV] « o

successor[v] ~ @

}
Mt] =0
for i =1ton-1{
foreach node w O V {
if (Mw has been updated in previous iteration) {
foreach node v such that (v, w) O E {
it (Mvl >MwW + ¢, {
MVl « Mw + ¢,
successor[v] « w
}
}
If no Mw value changed in iteration i, stop.
}

}

6.9 Distance Vector Protocol

Distance Vector Protocol

Communication network.
. Nodes = routers.
- Edges = direct communication link.
. Cost of gdge = de[qy oh link. «— naturally nonnegative, but Bellman-Ford used anyway!

Dijkstra's algorithm. Requires global information of network.
Bellman-Ford. Uses only local knowledge of neighboring nodes.
Synchronization. We don't expect routers to run in lockstep. The

order in which each f or each loop executes in not important. Moreover,
algorithm still converges even if updates are asynchronous.

Distance Vector Protocol

Distance vector protocol.
. Each router maintains a vector of shortest path lengths to every
other node (distances) and the first hop on each path (directions).
« Algorithm: each router performs n separate computations, one for
each potential destination node.
. "Routing by rumor."

Ex. RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA
Phase IV, AppleTalk's RTMP.

Caveat. Edge costs may change during algorithm (or fail completely).

(ﬁ 1 }‘D """ 1@ "counting to infinity"

deleted

Path Vector Protocols

Link state rou’ring. - not just the distance and first hop
. Each router also stores the entire path.
. Based on Dijkstra's algorithm.
. Avoids "counting-to-infinity" problem and related difficulties.
. Requires significantly more storage.

Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

6.10 Negative Cycles in a Graph

Detecting Negative Cycles

Lemma. If OPT(n,v) = OPT(n-1,v) for all v, then no negative cycles.
Pf. Bellman-Ford algorithm.

Lemma. If OPT(n,v)< OPT(n-1v) for some node v, then (any) shortest
path from v to t contains a cycle W. Moreover W has negative cost.

Pf. (by contradiction)
. Since OPT(n,v) < OPT(n-1,v), we know P has exactly n edges.

. By pigeonhole principle, P must contain a directed cycle W.
. Deleting W yields a v-t path with < n edges = W has negative cost.

c(W)<0

Detecting Negative Cycles

Theorem. Can detect negative cost cycle in O(mn) time.
. Add new node t and connect all nodes to t with O-cost edge.
. Check if OPT(n, v) = OPT(n-1, v) for all nodes v.
- if yes, then no negative cycles
- if no, then extract cycle from shortest path from v fo t

-11
-15

Detecting Negative Cycles: Application

Currency conversion. Given n currencies and exchange rates between
pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

8
$ 1/7 F
800
3/10
4/3 2/3
2 3/50 (ton)
1/10000
1
70 {om) 56 ¥

Detecting Negative Cycles: Summary

Bellman-Ford. O(mn) time, O(m + n) space.
. Run Bellman-Ford for n iterations (instead of n-1).
. Upon termination, Bellman-Ford successor variables trace a negative
cycle if one exists.
.« See p. 288 for improved version and early fermination rule.

