

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time
- Secretary of Defense was hostile to mathematical research
- Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

- Bioinformatics
- Control theory.
- Information theory
- Operations research
- Computer science: theory, graphics, AI, systems, ...

Some famous dynamic programming algorithms.
. Viterbi for hidden Markov models.

- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $i<j$ such that $j o b i$ is compatible with j.
$E x: p(8)=5, p(7)=3, p(2)=0$.

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests $1,2, \ldots, j$.

- Case 1: OPT selects job j
-can't use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$
- Case 2: OPT does not select job j. - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$
O P T(j)=\left\{\begin{array}{c}
0 \\
\max
\end{array}\right.
$$

$\max \left\{v_{j}+O P T(p(j)), O P T(j\right.$

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

```
Input: n, s}\mp@subsup{\mathbf{s}}{1}{},\ldots,\mp@subsup{s}{n}{},\mp@subsup{f}{1}{},\ldots,\mp@subsup{f}{n}{},\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{
Compute p(1), p(2), ..., p(n)
Compute-Opt (j) {
    if ( }j=0
            return 0
    else
        return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

Weighted Interval Scheduling: Brute Force

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.


```
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{
Compute p(1), p(2), .., p(n)
for j = 1 to n
    M[j] = empty }\leftarrow\mathrm{ global array
M[j] = 0
M-Compute-Opt (j) {
    if (M[j] is empty)
        M[j] = max(w w + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
        return M[j]
}
```


Weighted Interval Scheduling: Running Time

Automated Memoization

Claim. Memoized version of algorithm takes $O(n \log n)$ time.
Automated memoization. Many functional programming languages

- Sort by finish time: $O(n \log n)$.
- Computing $p(\cdot): O(n)$ after sorting by start time.
- M-Compute-Opt (j) : each invocation takes $O(1)$ time and either - (i) returns an existing value $M[j]$
(ii) fills in one new entry m[j] and makes two recursive calls
- Progress measure $\Phi=\#$ nonempty entries of $m[]$.
initially $\Phi=0$, throughout $\Phi \leq n$.
- (ii) increases Φ by $1 \Rightarrow$ at most $2 n$ recursive calls.
- Overall running time of m-Compute-Opt (n) is $O(n)$. -

Remark. $O(n)$ if jobs are pre-sorted by start and finish times. (e.g., Lisp) have built-in support for memoization
Q. Why not in imperative languages (e.g., Java)?

```
defun F (n)
    (if
        if
        n
```

Lisp (efficient)

```
    static int F(int n) {
        else return F(n-1)+F(n-2);
}
```

Java (exponential)

Weighted Interval Scheduling: Bottom-Up
Bottom-up dynamic programming. Unwind recursion.
Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?
A. Do some post-processing.

```
Run M-Compute-Opt (n)
Find-Solution(j)
    if (j = 0)
        output nothing
    else if (v,
        print j
            Find-Solution(p(j))
        else
            Find-Solution(j-1)
}
```

. \# of recursive calls $\leq n \Rightarrow O(n)$.

```
Input: n, s
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
    M[0] = 0
            M[j] = max(vj +M[p(j)],M[j-1])
}
```


6.3 Segmented Least Squares

Segmented Least Squares

Least squares.

- Foundational problem in statistic and numerical analysis.
. Given n points in the plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Find a line $y=a x+b$ that minimizes the sum of the squared error:

```
SSE = \sum n}(\mp@subsup{y}{i}{}-a\mp@subsup{x}{i}{}-b\mp@subsup{)}{}{2
```


Solution. Calculus \Rightarrow min error is achieved when

```
n\mp@subsup{\sum}{i}{}\mp@subsup{x}{i}{}\mp@subsup{y}{i}{}-(\mp@subsup{\sum}{i}{}\mp@subsup{x}{i}{})(\mp@subsup{\sum}{i}{}\mp@subsup{y}{i}{})},\quadb=\underline{\mp@subsup{\sum}{i}{}\mp@subsup{y}{i}{}-a\mp@subsup{\sum}{i}{}\mp@subsup{x}{i}{}
    n\sum\mp@subsup{\sum}{i}{}\mp@subsup{x}{i}{2}-(\mp@subsup{\sum}{i}{}\mp@subsup{x}{i}{}\mp@subsup{)}{}{2}
```


Segmented Least Squares

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
- $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of lines that minimizes:
the sum of the sums of the squared errors E in each segment

the number of lines L

- Tradeoff function: E $+c L$, for some constant $c>0$.

Dynamic Programming: Multiway Choice

Notation.

- OPT $(j)=$ minimum cost for points $p_{1}, p_{i+1}, \ldots, p_{j}$.
- $e(i, j)=$ minimum sum of squares for points $p_{i}, p_{i+1}, \ldots, p_{j}$.

To compute OPT(j):

- Last segment uses points $p_{i}, p_{i+1}, \ldots, p_{j}$ for some i.
- Cost $=e(i, j)+c+O P T(i-1)$.

```
OPT(j)={
{}
if j=0
OPT(j)={\mp@subsup{\operatorname{min}}{1\leqi\leqj}{{}{e(i,j)+c+OPT(i-1)} otherwise
```

6.4 Knapsack Problem

Running time. $O\left(n^{3}\right)$. can be improved to $O\left(n^{2}\right)$ by pre-computing various statistics

- Bottleneck = computing e (i, j) for $O\left(n^{2}\right)$ pairs, $O(n)$ per pair using previous formula.
previous formula.

```
```

INPUT: n, p

```
```

INPUT: n, p
Segmented-Least-Squares() {
Segmented-Least-Squares() {
m[0] = 0
m[0] = 0
for j = 1 to n
for j = 1 to n
for i = 1 to j
for i = 1 to j
compute the least square error }\mp@subsup{e}{ij}{}\mathrm{ for
compute the least square error }\mp@subsup{e}{ij}{}\mathrm{ for
the segment }\mp@subsup{p}{i}{},···,\mp@subsup{p}{j}{
the segment }\mp@subsup{p}{i}{},···,\mp@subsup{p}{j}{
for j = 1 to n
for j = 1 to n
M[j] = min}1\leqi\leqj((eij +c+M[i-1]),
M[j] = min}1\leqi\leqj((eij +c+M[i-1]),
return M[n]
return M[n]
}

```
```

}

```
```

Segmented Least Squares: Algorithm
Knapsack Problem
Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_{i}>0$ kilograms and has value $v_{i}>0$.
. Knapsack has capacity of W kilograms
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3,4\}$ has value 40 .

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}.
Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Dynamic Programming: False Start

Dynamic Programming: Adding a New Variable

Def. OPT $(i, w)=\max$ profit subset of items $1, \ldots, i$ with weight limit w.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$ using weight limit w

OPT selects best of $\{1,2, i-1\}$

Case 2: OPT selects item i

- Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
new weight limit $=w-w_{i}$ reject other items

OPT selects best of $\{1,2, \ldots, i-1\}$ using this new weight limit
without knowing what other items were selected before i, we don' \dagger even know if we have enough room for i

Conclusion. Need more sub-problems!
$\operatorname{OPT}(i, w)= \begin{cases}0 & \text { if } i=0 \\ \operatorname{OPT}(i-1, w) & \text { if } w_{i}>w \\ \max \left\{O P T(i-1, w), v_{i}+O P T\left(i-1, w-w_{i}\right)\right\} & \text { otherwise }\end{cases}$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array

```
Input: n, w
for w = 0 to w
    m[0, w] = 0
for i=1 to n
    for w = 1 to w
            if ( wi > w)
            M[i,w] = M[i-1,w]
            else
            M[i,w] = max {M[i-1,w], vi
return M[n, w]
```


Knapsack Problem: Running Time

Running time. $\Theta(n \mathrm{~W})$.
. Not polynomial in input size
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]
6.5 RNA Secondary Structure

RNA Secondary Structure

Secondary structure. A set of pairs $S=\left\{\left(b_{i}, b_{j}\right)\right\}$ that satisfy:

- [Watson-Crick.] S is a matching and each pair in S is a WatsonCrick complement: A-U, U-A, C-G, or G-C.
. [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $\left(b_{i}, b_{j}\right) \in S$, then $i<j-4$.
- [Non-crossing.] If $\left(b_{i}, b_{j}\right)$ and $\left(b_{k}, b_{1}\right)$ are two pairs in S, then we cannot have $\mathrm{i}<\mathrm{k}<\mathrm{j}<\mathrm{l}$.

Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.
approximate by number of base pair
Goal. Given an RNA molecule $B=b_{1} b_{2} \ldots b_{n}$, find a secondary structure S that maximizes the number of base pairs.

RNA Secondary Structure: Examples
Examples.

Dynamic Programming Over Intervals

Notation. $\operatorname{OPT}(i, j)=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \cdots b_{j}$

- Case 1. If $\mathrm{i} \geq \mathrm{j}-4$.
- OPT $(\mathrm{i}, \mathrm{j})=0$ by no-sharp turns condition.
- Case 2. Base b_{j} is not involved in a pair. - OPT $(\mathrm{i}, \mathrm{j})=$ OPT($\mathrm{i}, \mathrm{j}-1)$
- Case 3. Base b_{j} pairs with b_{\dagger} for some $i \leq t<j-4$. non-crossing constraint decouples resulting sub-problems OPT $(\mathrm{i}, \mathrm{j})=1+\max _{+}\{$OPT($\mathrm{i}, \mathrm{t}-1)+$ OPT $\left.(\dagger+1, j-1)\right\}$

$$
\begin{aligned}
& \text { take max over }+ \text { such h hat } i \leq+j,-4 \text { and } \\
& b_{a} \text { and } \mathrm{b}_{\mathrm{j}} \text { re Watson-Crick complements }
\end{aligned}
$$

Remark. Same core idea in CKY algorithm to parse context-free grammars.

First attempt. OPT $(\mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{1} b_{2} \ldots b_{j}$.

Difficulty. Results in two sub-problems.

- Finding secondary structure in: $b_{1} b_{2} \ldots b_{t-1}$. \leftarrow OPT(t-1)
- Finding secondary structure in: $b_{t+1} b_{++2} \cdots b_{n-1} . \leftarrow$ need more sub-problems

RNA Secondary Structure: Subproblems

\qquad

Bottom Up Dynamic Programming Over Intervals
Q. What order to solve the sub-problems?
A. Do shortest intervals first.

```
RNA (b
    or k = 5, 6, , n-1
        for i = 1, 2, ..., n-k
            j=i+k
            Compute M[i, j]
    seturn M[1, n] using recurrence
}
```

Running time. $O\left(n^{3}\right)$.

Recipe.

- Characterize structure of problem
- Recursively define value of optimal solution.
- Compute value of optimal solution
. Construct optimal solution from computed information.

Dynamic programming techniques.

- Binary choice: weighted interval scheduling

Multi-way choice: segmented least squares._Viterbialogithm for HMM also ves

- Adding a new variable: knapsack
- Dynamic programming over intervals: RNA secondary structure.
cky parsing algorithm for context-free

Top-down vs. bottom-up: different people have different intuitions

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$.
- Cost = sum of gap and mismatch penalties.

Sequence Alignment

Goal: Given two strings $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ find alignment of minimum cost

Def. An alignment M is a set of ordered pairs $x_{i}-y_{j}$ such that each item occurs in at most one pair and no crossings.

Def. The pair $x_{i}-y_{j}$ and $x_{i^{\prime}}-y_{j^{\prime}}$ cross if $i\left\langle i^{\prime}\right.$, but $j>j^{\prime}$.

Sequence Alignment: Problem Structure

Def. OPT $(i, j)=$ min cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

- Case 1: OPT matches $x_{i}-y_{j}$.
- pay mismatch for $x_{i}-y_{j}+\min$ cost of aligning two strings
$x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
. Case 2a: OPT leaves x_{i} unmatched
pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$
- Case 2b: OPT leaves y_{j} unmatched.
- pay gap for y_{j} and min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$

Sequence Alignment: Algorithm


```
    for i = 0 to m
        M[0,i] = i\delta
        or j = 0 to n
        M[j, 0] = j
    for i = 1 to m
        for j = 1 to n
            M[i, j] = min(\alpha[\mp@subsup{x}{i}{},\mp@subsup{y}{j}{\prime}]+M[i-1, j-1],
                    \delta + M[i-1, j],
    return M[m, n]
}
```

Analysis. $\Theta(m n)$ time and space
English words or sentences: $m, n \leq 10$
Computational biology: $m=n=100,000.10$ billions ops OK, but 10GB array?
6.7 Sequence Alignment in Linear Space

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in $O(m+n)$ space and $O(m n)$ time

- Compute OPT(i, •) from OPT(i-1, •).
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in $O(m+n)$ space and $O(m n)$ time.

- Clever combination of divide-and-conquer and dynamic programming
- Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Can compute $f(\cdot, j)$ for any j in $O(m n)$ time and $O(m+n)$ space.

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Observation: $f(i, j)=$ OPT (i, j)

Sequence Alignment: Linear Space

Sequence Alignment: Linear Space

Edit distance graph.

- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of $(0,0)$ and (m, n)

Sequence Alignment: Running Time Analysis Warmup
Theorem. Let $T(m, n)=\max$ running time of algorithm on strings of length at most m and $n . T(m, n)=O(m n \log n)$.

```
T(m,n)\leq2T(m,n/2)+O(mn) =>T(m,n)=O(mn\operatorname{log}n)
```

Remark. Analysis is not tight because two sub-problems are of size $(q, n / 2)$ and $(m-q, n / 2)$. In next slide, we save $\log n$ factor.

Sequence Alignment: Running Time Analysis

Theorem. Let $T(m, n)=\max$ running time of algorithm on strings of length m and $n . T(m, n)=O(m n)$.

Pf. (by induction on n)

- $O(m n)$ time to compute $f(\cdot, n / 2)$ and $g(\cdot, n / 2)$ and find index q.
- $T(q, n / 2)+T(m-q, n / 2)$ time for two recursive calls.
- Choose constant c so that:

```
                                    T(m,2)\leqcm
                                    T(2,n)\leqcn
                                    T(m,n)\leqcmn+T(q,n/2)+T(m-q,n/2)
```

- Base cases: $\mathrm{m}=2$ or $\mathrm{n}=2$.
. Inductive hypothesis: $T(m, n) \leq 2 \mathrm{cmn}$.

```
T(m,n)\leqT(q,n/2)+T(m-q,n/2)+cmn
                                    2cqn/2+2c(m-q)n/2+cmn
                                    cqqn+cmn-cqn+cmn
    = 2cmn
```

