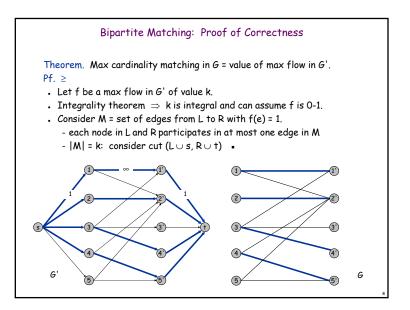
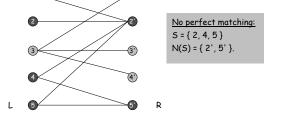
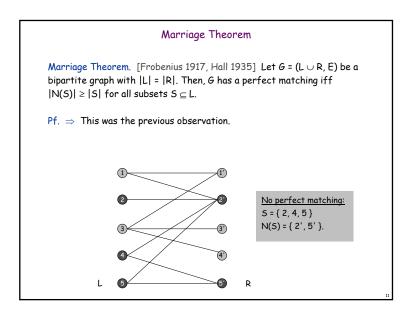

Bipartite Matching

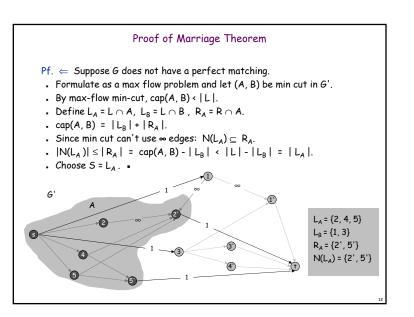

Bipartite matching.

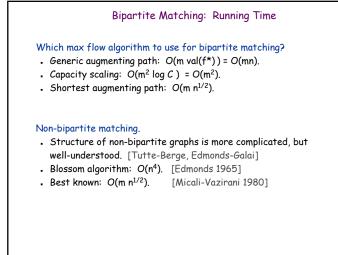
- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Perfect Matching

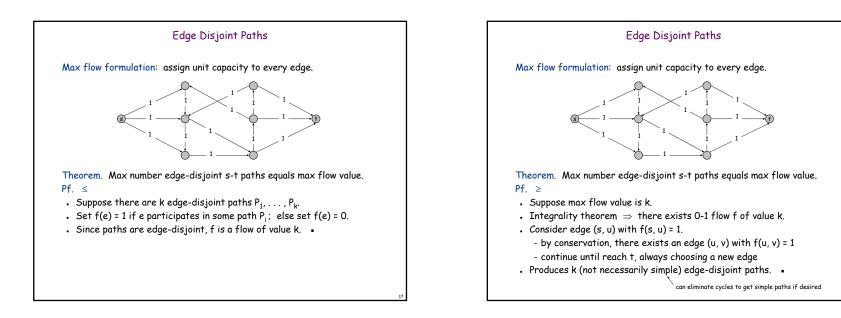

Def. A matching $M \subseteq E$ is perfect if each node appears in exactly one edge in M.

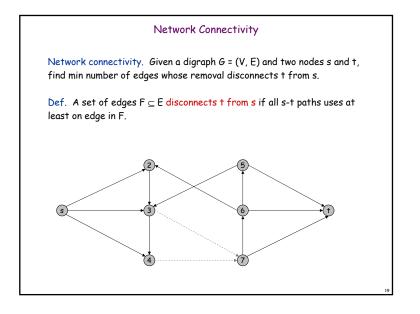

Q. When does a bipartite graph have a perfect matching?


Structure of bipartite graphs with perfect matchings.


- Clearly we must have |L| = |R|.
- What other conditions are necessary?
- What conditions are sufficient?

Perfect Matching Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S. Observation. If a bipartite graph $G = (L \cup R, E)$, has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$. Pf. Each node in S has to be matched to a different node in N(S).

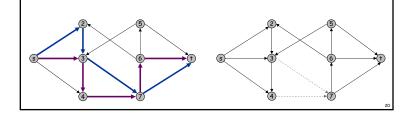




<text><text><text><text>

<text><text><text>

7.6 Disjoint Paths

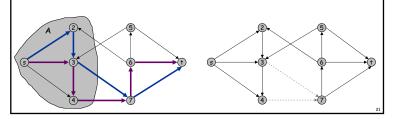


Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≤

- . Suppose the removal of $\mathsf{F} \subseteq \mathsf{E}$ disconnects t from s, and $|\mathsf{F}|$ = k.
- All s-t paths use at least one edge of F. Hence, the number of edgedisjoint paths is at most k.



Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

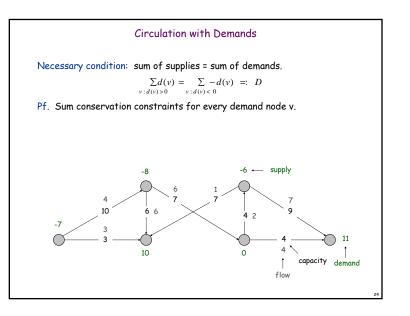
Pf. \geq

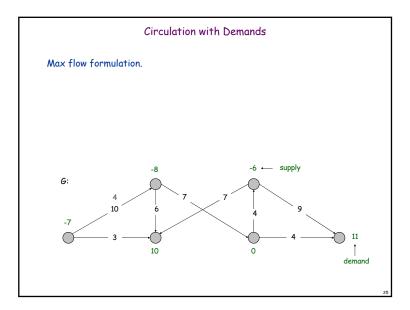
- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut \Rightarrow cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- |F| = k and disconnects t from s. •

7.7 Extensions to Max Flow

Circulation with Demands

Circulation with demands.


- Directed graph G = (V, E).
- Edge capacities c(e), e ∈ E.
- Node supply and demands $d(v), v \in V$.
 - demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0

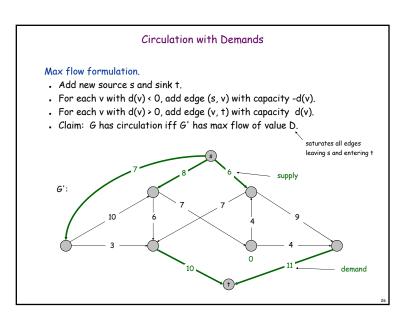

Def. A circulation is a function that satisfies:

• For each
$$e \in E$$
: $0 \le f(e) \le c(e)$ (capacity)

For each
$$v \in V$$
: $\sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$ (conservation)

Circulation problem: given (V, E, c, d), does there exist a circulation?

Circulation with Demands


Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

 $\mathsf{Pf.}\,$ Follows from max flow formulation and integrality theorem for max flow.

Characterization. Given (V, E, c, d), there does not exists a circulation iff there exists a node partition (A, B) such that $\sum_{v \in B} d_v > cap(A, B)$

Pf idea. Look at min cut in G'.

demand by nodes in B exceeds supply of nodes in B plus max capacity of edges going from A to B

Circulation with Demands and Lower Bounds

Feasible circulation.

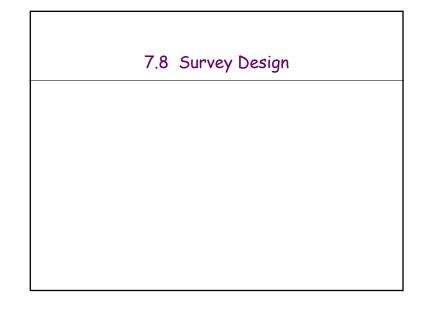
- Directed graph G = (V, E).
- . Edge capacities c(e) and lower bounds ℓ (e), $e \in E.$
- Node supply and demands $d(v), v \in V$.

Def. A circulation is a function that satisfies:

- For each $e \in E$: $\ell(e) \leq f(e) \leq c(e)$
- For each $v \in V$: $\sum_{e \text{ in to } v} f(e)$
- $\sum_{v \text{ in to } v} f(e) \sum_{e \text{ out of } v} f(e) = d(v) \quad \text{(conservation)}$

(capacity)

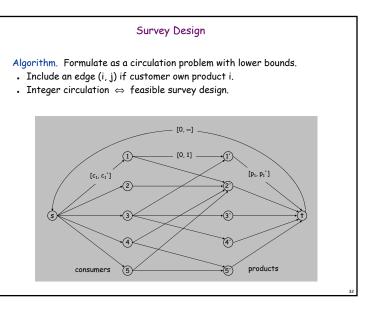
Circulation problem with lower bounds. Given (V, E, $\ell,\,c,\,d),$ does there exists a a circulation?

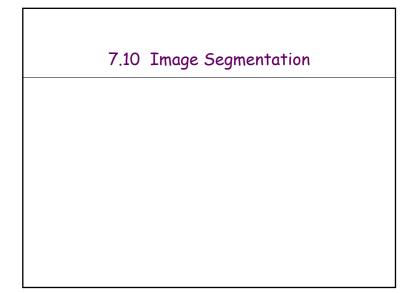

Idea. Model lower bounds with demands.

- Send ℓ(e) units of flow along edge e.
- Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a circulation in G'. If all demands, capacities, and lower bounds in G are integers, then there is a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - $\ell(e)$ is a circulation in G'.

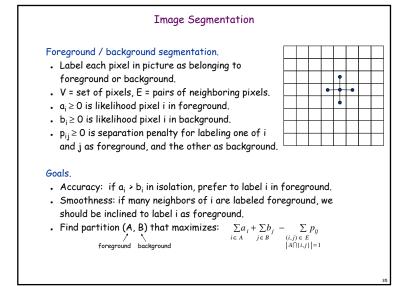

Survey Design

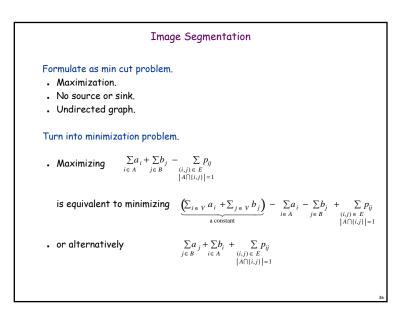

Survey design.

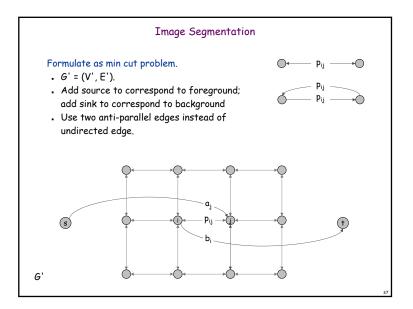
- Design survey asking n₁ consumers about n₂ products.
- Can only survey consumer i about a product j if they own it.
- . Ask consumer i between \boldsymbol{c}_i and $\boldsymbol{c}_i{'}$ questions.
- Ask between p_i and p_i' consumers about product j.

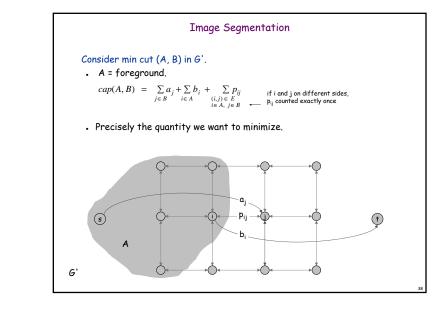
Goal. Design a survey that meets these specs, if possible.

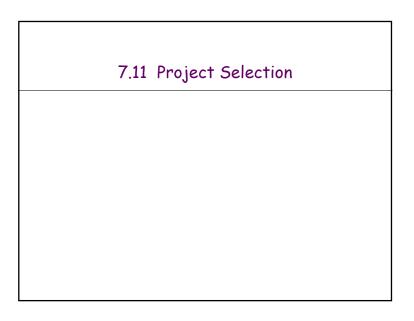
Bipartite perfect matching. Special case when $c_i = c_i' = p_i = p_i' = 1$.

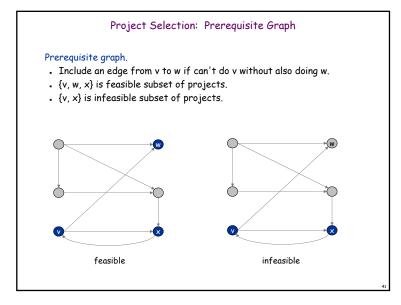


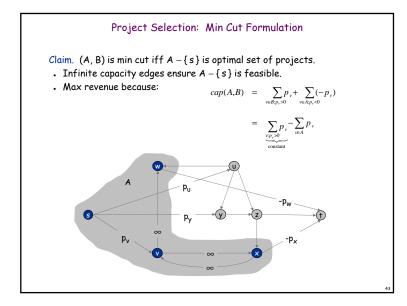

Image Segmentation

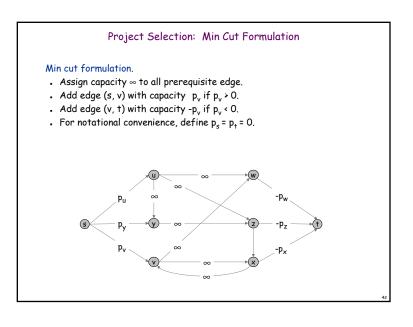

Image segmentation.

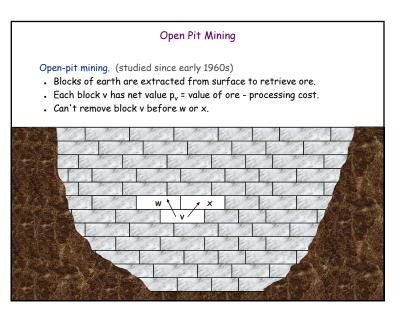

- . Central problem in image processing.
- . Divide image into coherent regions.

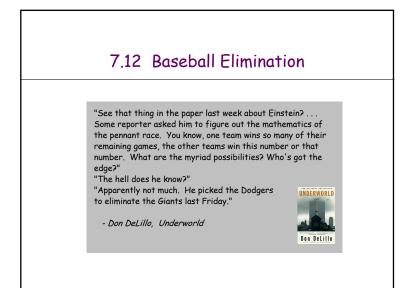

Ex: Three people standing in front of complex background scene. Identify each person as a coherent object.


Project Selection


can be positive or negative


Projects with prerequisites.


- . Set P of possible projects. Project v has associated revenue pv.
- some projects generate money: create interactive e-commerce interface, redesign web page
- others cost money: upgrade computers, get site license
- Set of prerequisites E. If $(v, w) \in E$, can't do project v and unless also do project w.
- A subset of projects $A \subseteq P$ is feasible if the prerequisite of every project in A also belongs to A.


Project selection. Choose a feasible subset of projects to maximize revenue.

	В	aseball I	Eliminatio	n			
Team	Wins Losses		Wins Losses To play Against = r _{ij}				
	w _i	l _i	r	Atl	Phi	NY	Mon
Atlanta	83	71	8	-	1	6	1
Philly	80	79	3	1	-	0	2
New York	78	78	6	6	0	-	0
Montreal	77	82	3	1	2	0	-

- Which teams have a chance of finishing the season with most wins?
- Montreal eliminated since it can finish with at most 80 wins, but Atlanta already has 83.
- $w_i + r_i < w_i \implies \text{team i eliminated.}$
- Only reason sports writers appear to be aware of.
- Sufficient, but not necessary!

Baseball Elimination									
Wins	Losses	To play	Against = r _{ij}						
w _i	l _i	r _i	Atl	Phi	NY	Mon			
83	71	8	-	1	6	1			
80	79	3	1	-	0	2			
78	78	6	6	0	-	0			
77	82	3	1	2	0	-			
	Wins w _i 83 80 78	Wins w _i Losses l _i 83 71 80 79 78 78	Wins w _i Losses l _i To play r _i 83 71 8 80 79 3 78 78 6	Wins w _i Losses l _i To play r _i	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Wins w _i Losses l _i To play r _i Against = r _{ij} Min Phi NV 83 71 8 - 1 6 80 79 3 1 - 0 78 78 6 6 0 -			

Which teams have a chance of finishing the season with most wins?

- Philly can win 83, but still eliminated . . .
- . If Atlanta loses a game, then some other team wins one.

Remark. Answer depends not just on how many games already won and left to play, but also on whom they're against.

Baseball Elimination

Baseball elimination problem.

- . Set of teams S.
- Distinguished team $s \in S$.
- Team x has won w_x games already.
- . Teams x and y play each other r_{xy} additional times.
- Is there any outcome of the remaining games in which team s finishes with the most (or tied for the most) wins?

Baseball Elimination: Max Flow Formulation Can team 3 finish with most wins? Assume team 3 wins all remaining games $\Rightarrow w_3 + r_3$ wins. Divvy remaining games so that all teams have $\le w_3 + r_3$ wins. $\frac{12}{14}$ $\frac{1$

(2-5

game nodes (4-5)

Baseball Elimination: Max Flow Formulation

Team	Wins	Losses	To play	Against = r _{ij}				
i	w _i	l _i	r _i	NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

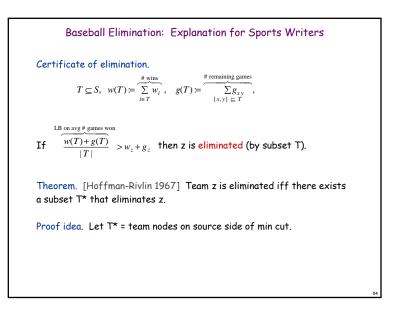
Reserved Elimination: Explanation for Sports Writers

5

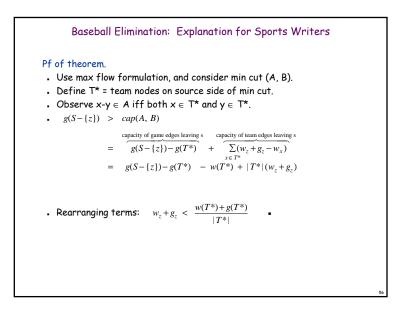
team nodes

Which teams have a chance of finishing the season with most wins? • Detroit could finish season with 49 + 27 = 76 wins.

Baseball Elimination: Explanation for Sports Writers										
Team	Wins	Losses	To play	Against = r _{ij}						
i	w _i	l _i	r _i	NY	Bal	Bos	Tor	Det		
NY	75	59	28	-	3	8	7	3		
Baltimore	71	63	28	3	-	2	7	4		
Boston	69	66	27	8	2	-	0	0		
Toronto	63	72	27	7	7	0	-	-		
Detroit	49	86	27	3	4	0	0	-		


AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?


• Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R = {NY, Bal, Bos, Tor}

- Have already won w(R) = 278 games.
- Must win at least r(R) = 27 more.
- Average team in R wins at least 305/4 > 76 games.

