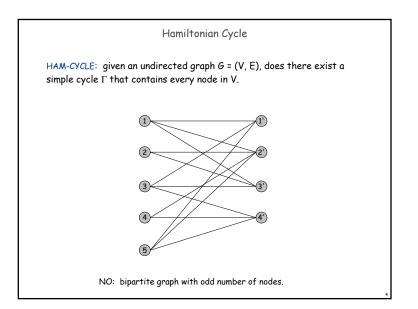


Hamiltonian Cycle HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V. YES: vertices and faces of a dodecahedron.

8.5 Sequencing Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

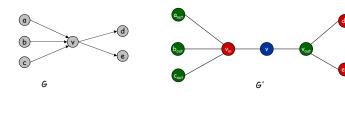


Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V?

Claim. DIR-HAM-CYCLE ≤ p HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes.



3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT ≤ DIR-HAM-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^n Hamiltonian cycles which correspond in a natural way to 2^n possible truth assignments.

Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

۲f. ⇒

- Suppose G has a directed Hamiltonian cycle Γ .
- Then G' has an undirected Hamiltonian cycle (same order).

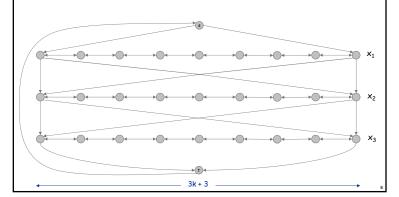
Pf. ⇐

- Suppose G' has an undirected Hamiltonian cycle Γ' .
- Γ' must visit nodes in G' using one of following two orders:
 - ..., B, G, R, B, G, R, B, G, R, B, ...
 - ..., B, R, G, B, R, G, B, R, G, B, ...
- Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one. -

3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2ⁿ Hamiltonian cycles.
- . Intuition: traverse path i from left to right \Leftrightarrow set variable x_i = 1.



3-SAT Reduces to Directed Hamiltonian Cycle Construction. Given 3-SAT instance Φ with n variables x_i and k clauses. For each clause: add a node and 6 edges. $C_1 = x_1 \ \forall \ \overline{x_2} \ \forall \ x_3$ clause node $C_2 = \overline{x_1} \ \forall \ \overline{x_2} \ \forall \ \overline{x_3}$ x_1

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. ⇒

- Suppose 3-SAT instance has satisfying assignment x^* .
- Then, define Hamiltonian cycle in G as follows:
 - if $x^*_i = 1$, traverse row i from left to right
 - if x^* ; = 0, traverse row i from right to left
 - for each clause C_1 , there will be at least one row i in which we are going in "correct" direction to splice node C_1 into tour

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. ⇐

- Suppose G has a Hamiltonian cycle Γ .
- If Γ enters clause node C_i , it must depart on mate edge.
 - thus, nodes immediately before and after \mathcal{C}_{j} are connected by an edge \mathbf{e} in \mathbf{G}
 - removing $C_{\rm j}$ from cycle, and replacing it with edge e yields Hamiltonian cycle on G { $C_{\rm i}$ }
- . Continuing in this way, we are left with Hamiltonian cycle Γ' in G { C_1 , C_2 , \ldots , C_k }.
- . Set $x_i^* = 1$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node ${\it C_j}$, at least one of the paths is traversed in "correct" direction, and each clause is satisfied. •

Longest Path

SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges?

LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges?

Claim. 3-SAT ≤ DLONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s. Pf 2. Show HAM-CYCLE \leq p LONGEST-PATH.

The Longest Path †

Lyrics. Copyright © 1988 by Daniel J. Barrett.

Music. Sung to the tune of *The Longest Time* by Billy Joel.

Woh-oh-oh, find the longest path! Woh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see Is of polynomial degree, But it's elusive: Nobody has found conclusive Evidence that we can find a longest path. I have been hard working for so long. I swear it's right, and he marks it wrong. Some how I'll feel sorry when it's done: GPA 2.1 Is more than I hope for.

Garey, Johnson, Karp and other men (and women) Tried to make it order N log N. Am I a mad fool If I spend my life in grad school,

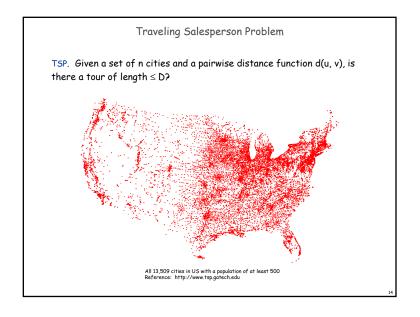
Forever following the longest path?

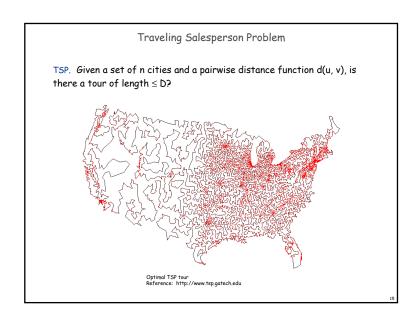
Woh-oh-oh-oh, find the longest path!

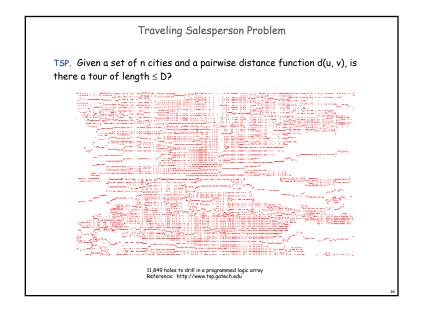
Woh-oh-oh-oh, find the longest path! Woh-oh-oh-oh, find the longest path!

t Recorded by Dan Barrett while a grad student at Johns Hopkins during a difficult algorithms final.

13

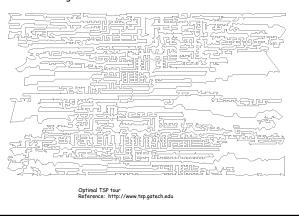






Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?



Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u,v), is there a tour of length $\leq D$?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V?

Claim. HAM-CYCLE
$$\leq p$$
 TSP.

 $d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$

• TSP instance has tour of length ≤ n iff G is Hamiltonian. •

Remark. TSP instance in reduction satisfies Δ -inequality.

8.6 Partitioning Problems

Basic genres.

Packing problems: SET-PACKING, INDEPENDENT SET.

Covering problems: SET-COVER, VERTEX-COVER.

• Constraint satisfaction problems: SAT, 3-SAT.

Sequencing problems: HAMILTONIAN-CYCLE, TSP.

■ Partitioning problems: 3D-MATCHING, 3-COLOR.

• Numerical problems: SUBSET-SUM, KNAPSACK.

3-Dimensional Matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

Instructor	Course	Time
Wayne	COS 423	MW 11-12:20
Wayne	COS 423	TTh 11-12:20
Wayne	COS 226	TTh 11-12:20
Wayne	COS 126	TTh 11-12:20
Tardos	COS 523	TTh 3-4:20
Tardos	COS 423	TTh 11-12:20
Tardos	COS 423	TTh 3-4:20
Kleinberg	COS 226	TTh 3-4:20
Kleinberg	COS 226	MW 11-12:20
Kleinberg	CO5 423	MW 11-12:20

3-Dimensional Matching

3D-MATCHING. Given disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Claim. $3-SAT \le P$ 3D-Matching.

Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-matching that has a perfect matching iff Φ is satisfiable.

3-Dimensional Matching

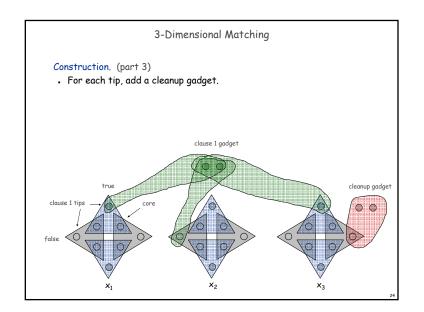
Construction. (part 2)

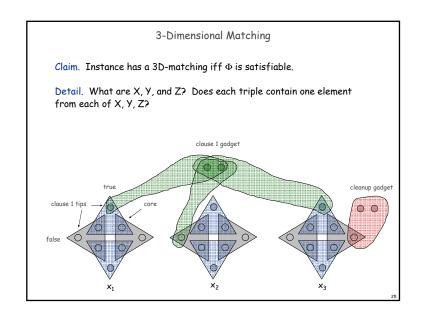
For each clause C_j create two elements and three triples.

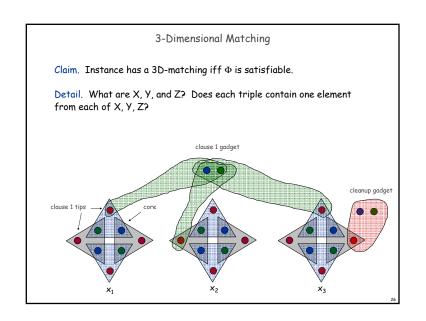
Exactly one of these triples will be used in any 3D-matching.

Ensures any 3D-matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3 . $\begin{array}{c} \text{clause 1 gadget} \\ \text{its own 2 adjacent tips} \end{array}$

3-Dimensional Matching Construction. (part 1) • Create gadget for each variable x, with 2k core and tip elements. • No other triples will use core elements. • In gadget i, 3D-matching must use either both grey triples or both blue ones. set x, = true set x, = false clause 1 tips clauses n = 3 variables x1 x1 clauses x2 x3







8.7 Graph Coloring

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color? yes instance

Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

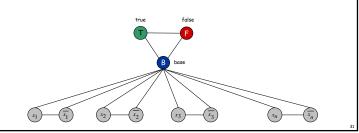
Fact. 3-COLOR \leq_p k-REGISTER-ALLOCATION for any constant $k \geq 3$.

3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- . Consider assignment that sets all T literals to true.
- . (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.



3-Colorability

Claim. $3-SAT \le p 3-COLOR$.

Pf. Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.

- i. For each literal, create a node.
- ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
- iii. Connect each literal to its negation.
- iv. For each clause, add gadget of 6 nodes and 13 edges.

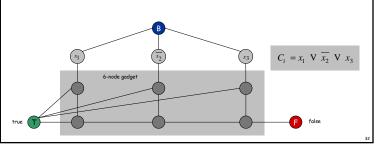
to be described next

3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- . (iv) ensures at least one literal in each clause is T.



$\begin{array}{c} \text{Claim. } \textit{G} \text{raph is 3-colorable iff } \Phi \text{ is satisfiable.} \\ \text{Pf.} \Rightarrow \text{Suppose graph is 3-colorable.} \\ \text{. } \textit{Consider assignment that sets all T literals to true.} \\ \text{. } \text{(ii) ensures each literal is T or F.} \\ \text{. } \text{(iii) ensures a literal and its negation are opposites.} \\ \text{. } \text{(iv) ensures at least one literal in each clause is T.} \\ \\ \text{not 3-colorable if all are red} \\ \hline \\ \text{C}_i = x_1 \ \text{V} \ \overline{x_2} \ \text{V} \ x_3} \\ \hline \\ \text{contradiction} \\ \hline \\ \text{True} \\ \hline \end{array}$

8.8 Numerical Problems

Basic genres.

Packing problems: SET-PACKING, INDEPENDENT SET.

• Covering problems: SET-COVER, VERTEX-COVER.

• Constraint satisfaction problems: SAT, 3-SAT.

• Sequencing problems: HAMILTONIAN-CYCLE, TSP.

■ Partitioning problems: 3-COLOR, 3D-MATCHING.

• Numerical problems: SUBSET-SUM, KNAPSACK.

Subset Sum

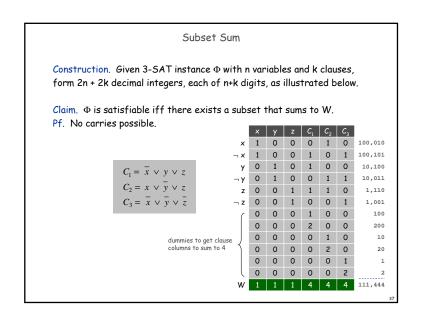
SUBSET-SUM. Given natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

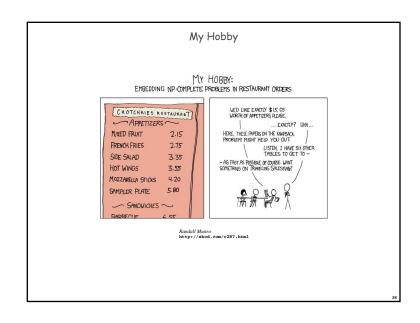
Ex: { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754. Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

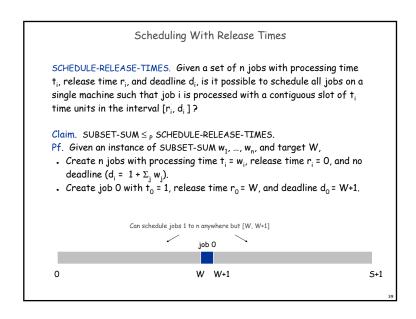
Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in binary encoding.

Claim. 3-SAT ≤ p SUBSET-SUM.

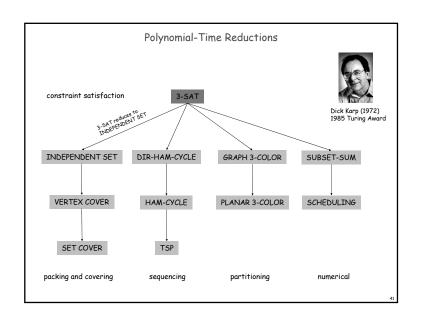
Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.

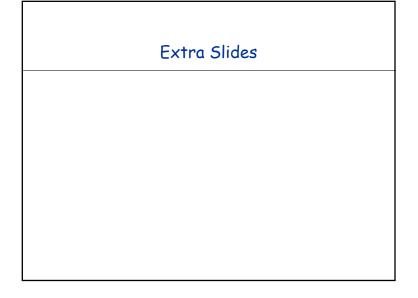


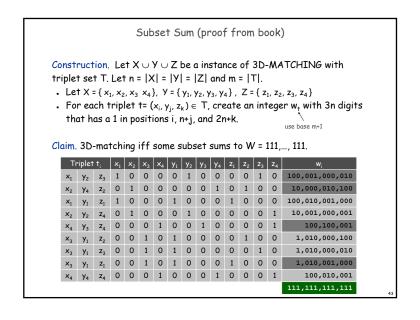


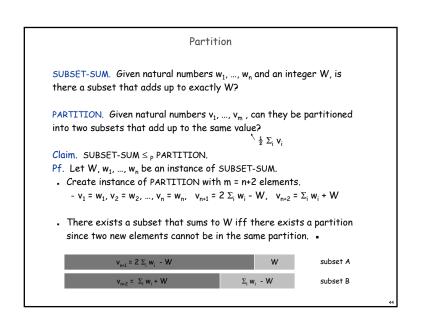


8.10 A Partial Taxonomy of Hard Problems

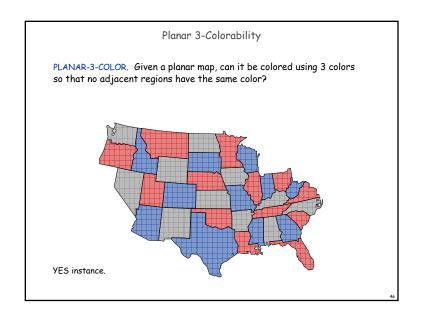


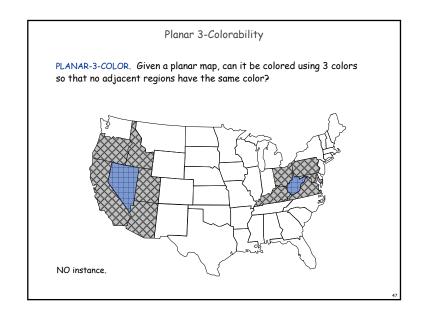


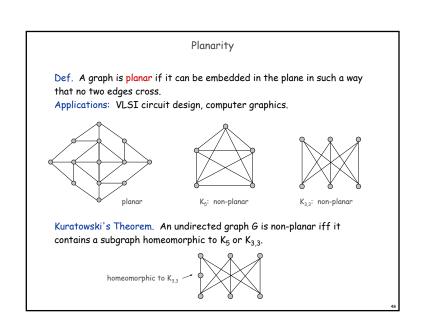




4 Color Theorem







Planarity Testing

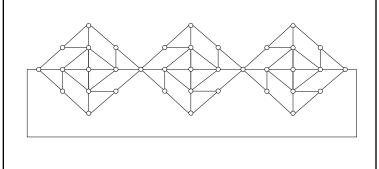
Planarity testing. [Hopcroft-Tarjan 1974] O(n).

simple planar graph can have at most 3n edges

Remark. Many intractable graph problems can be solved in poly-time if the graph is planar; many tractable graph problems can be solved faster if the graph is planar.

Planar Graph 3-Colorability

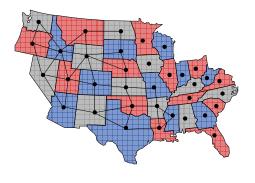
Q. Is this planar graph 3-colorable?



Planar 3-Colorability and Graph 3-Colorability

Claim. PLANAR-3-COLOR ≤ P PLANAR-GRAPH-3-COLOR.

Pf sketch. Create a vertex for each region, and an edge between regions that share a nontrivial border.

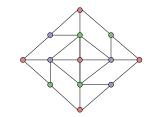


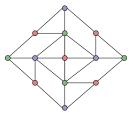
Planar Graph 3-Colorability

Claim. W is a planar graph such that:

- In any 3-coloring of W, opposite corners have the same color.
- Any assignment of colors to the corners in which opposite corners have the same color extends to a 3-coloring of W.

Pf. Only 3-colorings of W are shown below (or by permuting colors).



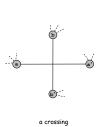


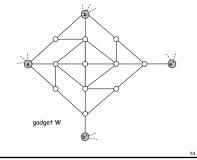
Planar Graph 3-Colorability

Claim. 3-COLOR ≤ p PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.

- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W, $a \neq a'$ and $b \neq b'$.
- If $a \neq a'$ and $b \neq b'$ then can extend to a 3-coloring of W.





Planar k-Colorability

PLANAR-2-COLOR. Solvable in linear time.

PLANAR-3-COLOR. NP-complete.

PLANAR-4-COLOR. Solvable in O(1) time.

Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.

- Resolved century-old open problem.
- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

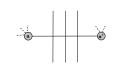
False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and PLANAR-5-COLOR.

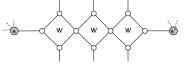
Planar Graph 3-Colorability

Claim. 3-COLOR ≤ p PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.

- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W, $a \neq a'$ and $b \neq b'$.
- If $a \neq a'$ and $b \neq b'$ then can extend to a 3-coloring of W.





multiple crossings

adaet W

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an $O(n^3)$ algorithm to determine if a graph can be embedded in the torus in such a way that no two edges cross.

Pf of theorem. Tour de force.

55

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an $O(n^3)$ algorithm to determine if a graph can be embedded in the torus in such a way that no two edges cross.

Mind boggling fact 1. The proof is highly non-constructive!

Mind boggling fact 2. The constant of proportionality is enormous!

Unfortunately, for any instance G = (V, E) that one could fit into the known universe, one would easily prefer n^{70} to even *constant* time, if that constant had to be one of Robertson and Seymour's. - David Johnson

Theorem. There exists an explicit O(n) algorithm. Practice. LEDA implementation guarantees $O(n^3)$.

7