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Media-On-Demand 

• Two hour movie 
• 5 minute song
• 2 minute news video clip
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Goals for On-Demand Streams

• Satisfy the client
– Minimize delay
– Simplicity

• Reduce resource needs for the server
– Minimize bandwidth

• Opportunities exist to satisfy the goals using 
Stream Merging if:
– Adequate client receive bandwidth
– Adequate client buffer storage
– Multicast
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Batching vs. Stream Merging
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Delay vs. Bandwidth Tradeoff
2 hour movie 
720 arrivals per movie
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Clients C
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Assumptions for Stream Merging

• Multicast of streams for simultaneous 
reception.

• Clients have receive bandwidth twice the 
playback bandwidth for each stream.

• Clients have adequate buffer space.
• In reply to a request clients are told once and 

for all which streams to listen to and when. 
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Off-line vs. On-line

• Off-line
– Arrival sequence is known in advance
– Fully loaded = delay guaranteed

• On-line
– Future arrivals not known
– Clients’ behavior not affected by future arrivals
– Server must add new streams and lengthen old 

streams to accommodate new arrivals
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Contributions

• New model for stream merging
• Efficient optimal off-line algorithms

– General case
– Fully loaded

• Gain in using optimal off-line algorithm
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The Merge Tree
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Concrete Merge Figure

Abstract Merge Tree
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Calculating the Cost

A B C D

A

B C

D

5 = 2(D - C) + C - A

1 = D - C

2 = B - A

L = length of stream

•Root cost = length of stream
•Merge cost = sum of all streams

except the root
•Full cost = root cost + merge cost

Merge cost = 8 
Full cost = L + 8

modeling
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Merge Cost Focus

• Any general solution will be a merge forest.
– A full stream has finite length
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Off-line Optimal Merging
• Recursive formula for merge cost

MCost(T) = MCost(T1) + MCost(T2)  +2(Z - B) + (B - A) 

T1

T2

A

B

Z = last arrival

T

optimal
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Dynamic Program for Optimal Merge 
Cost

• Setup
– Arrivals t1,t2, … ,tn
– M(i,j) = minimum merge cost of a merge tree for the 

arrivals ti,t2, … ,tj
– M(1,n) is the optimal merge cost

• Recurrence
– M(i,i) = 0
– M(i,j) = mini < k < j{M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}

• O(n3) time, O(n2) storage
– Aggarwal, Wolf, Yu (1996), Eager,Vernon, Zahorjan (1999)
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The Recurrence

t1

tk-1

tj

tk

M(i,j) = mini < k < j{M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}
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The Computation
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The Optimal Merge Tree
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Optimal Algorithm Behavior

O(n3) time
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O(n2) Optimal Algorithm

• Setup
Arrivals t1,t2, … ,tn
r(i,j) = the right most stream that merges to the root 
of an optimal merge tree for the arrivals ti,…,tj.

• Monotonicity (Knuth ‘71, F. Yao ’80, Borchers, Gupta ‘94)

r(i,j - 1) < r(i,j) < r(i + 1,j)

optimal

M(i,j) = minr(i,j-1) < k < r(i+1,J){M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}
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New Algorithm Behavior

O(n2) time

M(i,j)

r(i,j-1)

r(i+1,j)

r(i,j-1) r(i+1,j)
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New Algorithm Behavior

O(n2) time
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Fully Loaded Optimal Merge Tree

• Fully Loaded Arrivals
– Streams at 0,1,2,3,4,…,n-1

optimal
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Fibonacci Rules!

• Fibonacci numbers
– 0,1,1, 2, 3, 5, 8,13, 21, 34, 55, 89, …
– F0 = 0, F1 = 1, Fk = Fk-1 + Fk-2

• Recurrence for fully loaded arrivals

• Solution
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Induction Hypothesis Design

21 {13}, 
22 {13, 14}, 
23 {13, 14, 15}, 
24 {13, 14, 15, 16}, 
25 {13, 14, 15, 16, 17}, 
26 {13, 14, 15, 16, 17, 18}, 
27 {14, 15, 16, 17, 18, 19}, 
28 {15, 16, 17, 18, 19, 20}, 
29 {16, 17, 18, 19, 20, 21}, 
30 {17, 18, 19, 20, 21}, 
31 {18, 19, 20, 21}, 
32 {19, 20, 21}, 
33 {20, 21}, 
34 {21}, 
35 {21, 22}, 
36 {21, 22, 23}, 
37 {21, 22, 23, 24}, 
38 {21, 22, 23, 24, 25}, 
39 {21, 22, 23, 24, 25, 26}, 
40 {21, 22, 23, 24, 25, 26, 27}, 
41 {21, 22, 23, 24, 25, 26, 27, 28}, 
42 {21, 22, 23, 24, 25, 26, 27, 28, 29}, 
43 {22, 23, 24, 25, 26, 27, 28, 29, 30}, 
44 {23, 24, 25, 26, 27, 28, 29, 30, 31}, 
45 {24, 25, 26, 27, 28, 29, 30, 31, 32}, 
46 {25, 26, 27, 28, 29, 30, 31, 32, 33}, 
47 {26, 27, 28, 29, 30, 31, 32, 33, 34}, 
48 {27, 28, 29, 30, 31, 32, 33, 34}, 
49 {28, 29, 30, 31, 32, 33, 34}, 
50 {29, 30, 31, 32, 33, 34}, 
51 {30, 31, 32, 33, 34}, 
52 {31, 32, 33, 34}, 
53 {32, 33, 34}, 
54 {33, 34}, 

2  {1}, 
3  {2}, 
4  {2, 3}, 
5  {3}, 
6  {3, 4}, 
7  {4, 5}, 
8  {5}, 
9  {5, 6}, 
10 {5, 6, 7}, 
11 {6, 7, 8}, 
12 {7, 8}, 
13 {8}, 
14 {8,   9}, 
15 {8,   9,   10}, 
16 {8,   9,   10, 11}, 
17 {9,   10, 11, 12}, 
18 {10, 11, 12, 13}, 
19 {11, 12, 13}, 
20 {12, 13}, 

55 {34}, 
56 {34, 35}, 
57 {34, 35, 36}, 
58 {34, 35, 36, 37}, 
59 {34, 35, 36, 37, 38}, 
60 {34, 35, 36, 37, 38, 39}, 
61 {34, 35, 36, 37, 38, 39, 40}, 
62 {34, 35, 36, 37, 38, 39, 40, 41}, 
63 {34, 35, 36, 37, 38, 39, 40, 41, 42}, 
64 {34, 35, 36, 37, 38, 39, 40, 41, 42, 43}, 
65 {34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}, 
66 {34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45}, 
67 {34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46}, 
68 {34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47}, 
69 {35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48}, 
70 {36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49}, 
71 {37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}, 
72 {38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51}, 
73 {39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52}, 
74 {40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53}, 
75 {41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54}, 
76 {42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55}, 
77 {43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55}, 
78 {44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55}, 
79 {45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55}, 
80 {46, 47, 48, 49, 50, 51, 52, 53, 54, 55}, 
81 {47, 48, 49, 50, 51, 52, 53, 54, 55}, 
82 {48, 49, 50, 51, 52, 53, 54, 55}, 
83 {49, 50, 51, 52, 53, 54, 55}, 
84 {50, 51, 52, 53, 54, 55}, 
85 {51, 52, 53, 54, 55}, 
86 {52, 53, 54, 55}, 
87 {53, 54, 55},
88 {54, 55}, 
89 {55}, 
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Fully Loaded Optimal Trees
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Full Cost
L = 8

Merge Forest
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Optimal Full Cost
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Find the merge forest F that minimizes Fcost(F).
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Recursive Definition of Full Cost

)'()()( 1 FFCostTMCostLFFCost ++=

T1 T2 T3 Ts

F’F

Stream Merging 47

Optimal Full Cost Algorithm

• Setup
– Arrivals t1,t2, … ,tn
– G(i) = the optimal full cost for the last n-i+1 arrivals 

ti,ti+1, … ,tn
– G(1) is the optimal full cost

• Recurrence
– G(n+1) = 0
– G(i) = L + min{ M(i,k-1) + G(k) : i < k < n+1 

and tk+1 - ti < L-1}
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Full Cost for Fully Loaded

• The optimization simplifies
• O(n) time to compute the optimal merge 

forest
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Gain in Using Stream Merging

• For fully loaded
– logφ L / L reduction in bandwidth

• Example: 2 hour movie shown every minute
– L = 120
– logφ L / L = .083
– Server can show 12 different movies instead of 1.
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Conclusions

• Stream Merging can be effective in reducing 
bandwidth

• Optimal off-line stream merging is efficient
• Optimal fully loaded stream merging is even 

more efficient


