
1

Optimal Off-Line Stream Merging
for Media-on-Demand

Amotz Bar-Noy
AT&T

Richard Ladner
U. of Washington

Stream Merging 2

Media-On-Demand

• Two hour movie
• 5 minute song
• 2 minute news video clip

Stream Merging 3

Goals for On-Demand Streams

• Satisfy the client
– Minimize delay
– Simplicity

• Reduce resource needs for the server
– Minimize bandwidth

• Opportunities exist to satisfy the goals using
Stream Merging if:
– Adequate client receive bandwidth
– Adequate client buffer storage
– Multicast

Stream Merging 4

Stream Merging System

Server

Client

Buffer
Player

Multicast
Channels

old stream

new stream

2

Stream Merging 5

Stream Merging System

Server

Client

Buffer
Player

Multicast
Channels

Stream Merging 6

Stream Merging System

Server

Client

Buffer
Player

Multicast
Channels

Stream Merging 7

Stream Merging System

Server

Client

Buffer
Player

Multicast
Channels

Stream Merging 8

Stream Merging System

Server

Client

Buffer
Player

Multicast
Channels

3

Stream Merging 9

Stream Merging System

Server

Client

Buffer
Player

Multicast
Channels

Stream Merging 10

Stream Merging System

Server

Client

Buffer
Player

Multicast
Channels

Stream Merging 11

Stream Merging System

Server

Client

Buffer
Player

Multicast
Channels

Stream Merging 12

Stream Merging System

Server

Client

Buffer
Player

Multicast
Channels

4

Stream Merging 13

Batching vs. Stream Merging

client
delay guarantee
stream

Batching Batching with merging

A AB B

1

2

3

6
5

4

7

1

2

3

6
5

4

7

1

2

3

6
5

4

7

1

2

3

Stream Merging 14

Delay vs. Bandwidth Tradeoff
2 hour movie
720 arrivals per movie

Stream Merging 15

Clients C

A B c

C: 1 - 1
B: 2 - 5
A: 6 - 10

1 2 3 4 5 6 7 8 9 10

C B

Stream Merging 16

Clients C

A B c

C: 1 - 1
B: 2 - 5
A: 6 - 10

1 2 3 4 5 6 7 8 9 10

C B B A

5

Stream Merging 17

Clients C

A B c

C: 1 - 1
B: 2 - 5
A: 6 - 10

1 2 3 4 5 6 7 8 9 10

C B B B A A

Stream Merging 18

Clients C

A B c

C: 1 - 1
B: 2 - 5
A: 6 - 10

1 2 3 4 5 6 7 8 9 10

C B B B B A A A

Stream Merging 19

Clients C

A B c

C: 1 - 1
B: 2 - 5
A: 6 - 10

1 2 3 4 5 6 7 8 9 10

C B B B B A A A A A

Stream Merging 20

Assumptions for Stream Merging

• Multicast of streams for simultaneous
reception.

• Clients have receive bandwidth twice the
playback bandwidth for each stream.

• Clients have adequate buffer space.
• In reply to a request clients are told once and

for all which streams to listen to and when.

6

Stream Merging 21

Off-line vs. On-line

• Off-line
– Arrival sequence is known in advance
– Fully loaded = delay guaranteed

• On-line
– Future arrivals not known
– Clients’ behavior not affected by future arrivals
– Server must add new streams and lengthen old

streams to accommodate new arrivals

Stream Merging 22

Contributions

• New model for stream merging
• Efficient optimal off-line algorithms

– General case
– Fully loaded

• Gain in using optimal off-line algorithm

Stream Merging 23

The Merge Tree

A B C D

A

B C

D

Concrete Merge Figure

Abstract Merge Tree

modeling Stream Merging 24

Calculating the Cost

A B C D

A

B C

D

5 = 2(D - C) + C - A

1 = D - C

2 = B - A

L = length of stream

•Root cost = length of stream
•Merge cost = sum of all streams

except the root
•Full cost = root cost + merge cost

Merge cost = 8
Full cost = L + 8

modeling

7

Stream Merging 25

Merge Cost Focus

• Any general solution will be a merge forest.
– A full stream has finite length

modeling Stream Merging 26

Off-line Optimal Merging
• Recursive formula for merge cost

MCost(T) = MCost(T1) + MCost(T2) +2(Z - B) + (B - A)

T1

T2

A

B

Z = last arrival

T

optimal

Stream Merging 27

Dynamic Program for Optimal Merge
Cost

• Setup
– Arrivals t1,t2, … ,tn
– M(i,j) = minimum merge cost of a merge tree for the

arrivals ti,t2, … ,tj
– M(1,n) is the optimal merge cost

• Recurrence
– M(i,i) = 0
– M(i,j) = mini < k < j{M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}

• O(n3) time, O(n2) storage
– Aggarwal, Wolf, Yu (1996), Eager,Vernon, Zahorjan (1999)

Stream Merging 28

The Recurrence

t1

tk-1

tj

tk

M(i,j) = mini < k < j{M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}

8

Stream Merging 29

The Computation

0

0

0

0

0

1 2 3 4 5

1

2

3

4

5

i 1 2 3 4 5

ti 0 3 4 5 8

M(i,j) = mini < k < j{M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}

i

j

j - i = 0

Stream Merging 30

The Computation

0 3

0 1

0 1

0 3

0

1 2 3 4 5

1

2

3

4

5

i 1 2 3 4 5

ti 0 3 4 5 8

M(i,j) = mini < k < j{M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}

i

j

j - i = 1

Stream Merging 31

The Computation

0 3 6

0 1 3

0 1 5

0 3

0

1 2 3 4 5

1

2

3

4

5

i 1 2 3 4 5

ti 0 3 4 5 8

M(i,j) = mini < k < j{M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}

i

j

j - i = 2

Stream Merging 32

The Computation

0 3 6 10

0 1 3

0 1 5

0 3

0

1 2 3 4 5

1

2

3

4

5

i 1 2 3 4 5

ti 0 3 4 5 8

M(i,j) = mini < k < j{M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}

j - i = 3

0 3 6 10

0 1 3

0 1 5

0 3

0

1 2 3 4 5

1

2

3

4

5

0 3 6 11

0 1 3

0 1 5

0 3

0

1 2 3 4 5

1

2

3

4

5

k = 1 k = 3k = 2

9

Stream Merging 33

The Computation

0 3 6 10

0 1 3 8

0 1 5

0 3

0

1 2 3 4 5

1

2

3

4

5

i 1 2 3 4 5

ti 0 3 4 5 8

M(i,j) = mini < k < j{M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}

i

j

j - i = 3

Stream Merging 34

The Computation

0 3 6 10 18

0 1 3 8

0 1 5

0 3

0

1 2 3 4 5

1

2

3

4

5

i 1 2 3 4 5

ti 0 3 4 5 8

M(i,j) = mini < k < j{M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}

i

j

j - i = 4

0

83

54

Stream Merging 35

The Optimal Merge Tree

0

83

54

0 345 8

Stream Merging 36

Optimal Algorithm Behavior

O(n3) time

10

Stream Merging 37

O(n2) Optimal Algorithm

• Setup
Arrivals t1,t2, … ,tn
r(i,j) = the right most stream that merges to the root
of an optimal merge tree for the arrivals ti,…,tj.

• Monotonicity (Knuth ‘71, F. Yao ’80, Borchers, Gupta ‘94)

r(i,j - 1) < r(i,j) < r(i + 1,j)

optimal

M(i,j) = minr(i,j-1) < k < r(i+1,J){M(i,k-1) + M(k,j) + 2(tj - tk) + (tk - ti)}

Stream Merging 38

New Algorithm Behavior

O(n2) time

M(i,j)

r(i,j-1)

r(i+1,j)

r(i,j-1) r(i+1,j)

Stream Merging 39

New Algorithm Behavior

O(n2) time

Stream Merging 40

Fully Loaded Optimal Merge Tree

• Fully Loaded Arrivals
– Streams at 0,1,2,3,4,…,n-1

optimal

11

Stream Merging 41

Fibonacci Rules!

• Fibonacci numbers
– 0,1,1, 2, 3, 5, 8,13, 21, 34, 55, 89, …
– F0 = 0, F1 = 1, Fk = Fk-1 + Fk-2

• Recurrence for fully loaded arrivals

• Solution

12 ,2)1()(++ ≤≤+−−= kkk FnFFnknM

optimal

}22)()({min)(

0)1(

11
−−+−+=

=

−≤≤
jnjnMjMnM

M

nj

Stream Merging 42

Induction Hypothesis Design

21 {13},
22 {13, 14},
23 {13, 14, 15},
24 {13, 14, 15, 16},
25 {13, 14, 15, 16, 17},
26 {13, 14, 15, 16, 17, 18},
27 {14, 15, 16, 17, 18, 19},
28 {15, 16, 17, 18, 19, 20},
29 {16, 17, 18, 19, 20, 21},
30 {17, 18, 19, 20, 21},
31 {18, 19, 20, 21},
32 {19, 20, 21},
33 {20, 21},
34 {21},
35 {21, 22},
36 {21, 22, 23},
37 {21, 22, 23, 24},
38 {21, 22, 23, 24, 25},
39 {21, 22, 23, 24, 25, 26},
40 {21, 22, 23, 24, 25, 26, 27},
41 {21, 22, 23, 24, 25, 26, 27, 28},
42 {21, 22, 23, 24, 25, 26, 27, 28, 29},
43 {22, 23, 24, 25, 26, 27, 28, 29, 30},
44 {23, 24, 25, 26, 27, 28, 29, 30, 31},
45 {24, 25, 26, 27, 28, 29, 30, 31, 32},
46 {25, 26, 27, 28, 29, 30, 31, 32, 33},
47 {26, 27, 28, 29, 30, 31, 32, 33, 34},
48 {27, 28, 29, 30, 31, 32, 33, 34},
49 {28, 29, 30, 31, 32, 33, 34},
50 {29, 30, 31, 32, 33, 34},
51 {30, 31, 32, 33, 34},
52 {31, 32, 33, 34},
53 {32, 33, 34},
54 {33, 34},

2 {1},
3 {2},
4 {2, 3},
5 {3},
6 {3, 4},
7 {4, 5},
8 {5},
9 {5, 6},
10 {5, 6, 7},
11 {6, 7, 8},
12 {7, 8},
13 {8},
14 {8, 9},
15 {8, 9, 10},
16 {8, 9, 10, 11},
17 {9, 10, 11, 12},
18 {10, 11, 12, 13},
19 {11, 12, 13},
20 {12, 13},

55 {34},
56 {34, 35},
57 {34, 35, 36},
58 {34, 35, 36, 37},
59 {34, 35, 36, 37, 38},
60 {34, 35, 36, 37, 38, 39},
61 {34, 35, 36, 37, 38, 39, 40},
62 {34, 35, 36, 37, 38, 39, 40, 41},
63 {34, 35, 36, 37, 38, 39, 40, 41, 42},
64 {34, 35, 36, 37, 38, 39, 40, 41, 42, 43},
65 {34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44},
66 {34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45},
67 {34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46},
68 {34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47},
69 {35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48},
70 {36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49},
71 {37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50},
72 {38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51},
73 {39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52},
74 {40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53},
75 {41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54},
76 {42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55},
77 {43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55},
78 {44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55},
79 {45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55},
80 {46, 47, 48, 49, 50, 51, 52, 53, 54, 55},
81 {47, 48, 49, 50, 51, 52, 53, 54, 55},
82 {48, 49, 50, 51, 52, 53, 54, 55},
83 {49, 50, 51, 52, 53, 54, 55},
84 {50, 51, 52, 53, 54, 55},
85 {51, 52, 53, 54, 55},
86 {52, 53, 54, 55},
87 {53, 54, 55},
88 {54, 55},
89 {55},

}22)()({minarg)(
11

−−+−+=
−≤≤

jnjnMjMnRM
nj

3

3

2

5

5

3

8

8

5

13

13

8

Stream Merging 43

Fully Loaded Optimal Trees

5

8

13

Stream Merging 44

Full Cost
L = 8

Merge Forest

12

Stream Merging 45

Optimal Full Cost

)()(
1
∑

=

+⋅=
s

i
iTMCostLsFFCost

Find the merge forest F that minimizes Fcost(F).

Stream Merging 46

Recursive Definition of Full Cost

)'()()(1 FFCostTMCostLFFCost ++=

T1 T2 T3 Ts

F’F

Stream Merging 47

Optimal Full Cost Algorithm

• Setup
– Arrivals t1,t2, … ,tn
– G(i) = the optimal full cost for the last n-i+1 arrivals

ti,ti+1, … ,tn
– G(1) is the optimal full cost

• Recurrence
– G(n+1) = 0
– G(i) = L + min{ M(i,k-1) + G(k) : i < k < n+1

and tk+1 - ti < L-1}

Stream Merging 48

Full Cost for Fully Loaded

• The optimization simplifies
• O(n) time to compute the optimal merge

forest

13

Stream Merging 49

Gain in Using Stream Merging

• For fully loaded
– logφ L / L reduction in bandwidth

• Example: 2 hour movie shown every minute
– L = 120
– logφ L / L = .083
– Server can show 12 different movies instead of 1.

Stream Merging 50

Conclusions

• Stream Merging can be effective in reducing
bandwidth

• Optimal off-line stream merging is efficient
• Optimal fully loaded stream merging is even

more efficient

