
1

1	

CSE 421: Introduction to Algorithms ���

I: Overview	

Fall 2011	

Anna Karlin	

Administrivia	

People:	

  Anna Karlin	

  Johnny Yan	

All relevant course information:	

 http://www.cs.washington.edu/421	

  Office hours, Wednesday 4-5, CSE 216	

We will cover a good part of chapters 1-8. 	

Slides by combination of Larry Ruzzo, Kevin Wayne and others. 	

Administrivia	

  Weekly homework, due Thursday ~ 40%	

  Take home midterm, out Nov 10, due Nov 17 ~25%	

  In-class, open book, open notes final ~35%	

  Working on homework sets:	

  Collaboration on formulation of ideas allowed.	

  Writing up solutions – can submit jointly with one other person.	

  You may not consult written materials other than the course

materials.	

  We prefer that homework solutions be typed.	

  Please indicate on your homework all people that you discussed

the problems with, and indicate any and all sources you used.	

  See grading guidelines handout.	

4	

What the course is about	

Design of Algorithms	

design methods	

common or important types of problems	

analysis of algorithms - efficiency	

correctness proofs	

2

5	

What the course is about	

Complexity, NP-completeness and intractability	

solving problems in principle is not enough	

algorithms must be efficient	

some problems have no efficient solution	

NP-complete problems	

important & useful class of problems whose solutions
(seemingly) cannot be found efficiently, but can be
checked easily	

6	

Very Rough Division of Time	

Algorithms (7 weeks)	

Analysis of Algorithms	

Basic Algorithmic Design Techniques	

Graph Algorithms	

Complexity & NP-completeness (2 weeks)	

Check online ���
calendar page for ���
(evolving) details 	
	

7	

Complexity Example	

Cryptography (e.g. RSA, SSL in browsers)	

Secret: p,q prime, say 512 bits each	

Public: n which equals p x q, 1024 bits	

In principle 	

there is an algorithm that given n will find p and q: ���
try all 2512 > 1.3x10154 possible p’s: kinda slow…	

In practice 	

no fast algorithm known for this problem (on non-quantum computers)	

security of RSA depends on this fact	

(“quantum computing”: strongly driven by possibility of changing this)	

8	

Algorithms versus Machines	

We all know about Moore’s Law and the
exponential improvements in hardware...	

Ex: sparse linear equations over 25 years	

10 orders of magnitude improvement!	

3

9	

107	

106	

105	

104	

103	

102	

101	

100	

Se
co

nd
s	

G.E. / CDC 3600	

CDC 6600	

CDC 7600	

Cray 1	

Cray 2	

Cray 3 (Est.)	

1960	
 1970	
 1980	
 1990	
 2000	

Source: Sandia, via M. Schultz"

Algorithms or Hardware?	

25 years
progress
solving sparse
linear
systems	

hardware: 4
orders of
magnitude	

10	

107	

106	

105	

104	

103	

102	

101	

100	

Se
co

nd
s	

G.E. / CDC 3600	

CDC 6600	

CDC 7600	

Cray 1	

Cray 2	

Cray 3 (Est.)	

Sparse G.E.	

Gauss-Seidel	

SOR	

CG	

1960	
 1970	
 1980	
 1990	
 2000	

Source: Sandia, via M. Schultz"

Algorithms or Hardware?	

25 years
progress
solving
sparse linear
systems	

hardware: 4
orders of
magnitude	

software: 6	

orders of
magnitude	

11	

Source: T.Quinn"

Algorithms or Hardware? 	

The ���
N-Body ���
Problem:	

in 30 years���
 107 hardware���
 1010 software	

12	

Algorithm: definition	

Procedure to accomplish a task or solve a
well-specified problem	

Well-specified: know what all possible inputs
look like and what output looks like given them	

“accomplish” via simple, well-defined steps	

Ex: sorting names (via comparison)	

Ex: checking for primality (via +, -, *, /, ≤)	

4

13	

Algorithms: a sample problem	

Printed circuit-board company has a robot
arm that solders components to the board	

Time: proportional to total distance the arm
must move from initial rest position around
the board and back to the initial position	

For each board design, find best order to do
the soldering	

14	

Printed Circuit Board	

15	

Printed Circuit Board	

16	

A Well-defined Problem	

Input: Given a set S of n points in the plane	

Output: The shortest cycle tour that visits
each point in the set S.	

Better known as “TSP”	

How might you solve it?	

5

17	

heuristic:���
A rule of thumb,
simplification, or educated
guess that reduces or limits
the search for solutions in���
domains that are difficult and
poorly understood. May be
good, but usually not
guaranteed to give the best
or fastest solution.	

Nearest ���
Neighbor ���
Heuristic	

Start at some point p0	

Walk first to its ���
nearest neighbor p1	

Repeatedly walk to the nearest unvisited neighbor
p2, then p3,… until all points have been visited	

Then walk back to p0	

18	

Nearest Neighbor Heuristic	

p0"
p1"

p6"

19	

An input where it works badly	

p0"

.9"1" 2"4" 8"16"

length ~ 84	

20	

An input where it works badly	

p0"

.9"1" 2"4" 8"16"

optimal soln for this example���
length = 63.8	

6

21	
p0"

.9"1" 2"4" 8"16"

Revised idea - Closest pairs first	

Repeatedly join the closest pair of points	

(s.t. result can still be part of a ���
single loop in the end. I.e., join ���
endpoints, but not points in middle, ���
of path segments already created.)	

How does this work on our bad example?	

?	

22	

Another bad example	

1"

1.5" 1.5"

23	

Another bad example	

1"

1.5" 1.5"

6+√10 = 9.16 "

vs "

8"

24	

Something that works	

“Brute Force Search”:	

For each of the n! = n(n-1)(n-2)…1 orderings of the
points, check the length of the cycle you get	

Keep the best one	

7

25	

Two Notes	

The two incorrect algorithms were greedy	

Often very natural & tempting ideas	

They make choices that look great “locally” (and never
reconsider them)	

When greed works, the algorithms are typically efficient	

BUT: often does not work - you get boxed in	

Our correct alg avoids this, but is incredibly slow	

20! is so large that checking one billion orderings per
second would take 2.4 billion seconds (around 70 years!)	

And growing: n! ~ √2 π n • (n/e)n ~ 2O(n log n)	

26	

Something that “works” (differently)	

1. Find Min Spanning Tree	

27	

Something that “works” (differently)	

2. Walk around it	

28	

3. Take shortcuts (instead of revisiting)	

Something that “works” (differently)	

8

29	

Something that “works” (differently):
Guaranteed Approximation	

Does it seem wacky?	

Maybe, but it’s always within a factor of 2 of
the best tour!	

deleting one edge from best tour gives a
spanning tree, so Min spanning tree < best tour	

best tour ≤ wacky tour ≤ 2 * MST < 2 * best	

triangle inequality	

30	

The Morals of the Story	

Algorithms are important	

 Many performance gains outstrip Moore’s law	

Simple problems can be hard 	

Factoring, TSP	

Simple ideas don’t always work 	

Nearest neighbor, closest pair heuristics	

Simple algorithms can be very slow	

Brute-force factoring, TSP	

Changing your objective can be good	

Guaranteed approximation for TSP	

And: for some problems, even the best algorithms are slow	

