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CSE 421:  Introduction to Algorithms ���

I: Overview	


Fall 2011	

Anna Karlin	


Administrivia	


People:	

  Anna Karlin	

  Johnny Yan	


All relevant course information:	

  http://www.cs.washington.edu/421	


  Office hours, Wednesday 4-5, CSE 216	


We will cover a good part of chapters 1-8. 	

Slides by combination of Larry Ruzzo, Kevin Wayne and others. 	


Administrivia	

  Weekly homework, due Thursday   ~ 40%	

  Take home midterm, out Nov 10, due Nov 17     ~25%	

  In-class, open book, open notes final    ~35%	


  Working on homework sets:	

  Collaboration on formulation of ideas allowed.	

  Writing up solutions – can submit jointly with one other person.	

  You may not consult written materials other than the course 

materials.	

  We prefer that homework solutions be typed.	

  Please indicate on your homework all people that you discussed 

the problems with, and indicate any and all sources you used.	

  See grading guidelines handout.	
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What the course is about	


Design of Algorithms	

design methods	


common or important types of problems	

analysis of algorithms - efficiency	

correctness proofs	
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What the course is about	

Complexity, NP-completeness and intractability	


solving problems in principle is not enough	

algorithms must be efficient	


some problems have no efficient solution	


NP-complete problems	

important & useful class of problems whose solutions 
(seemingly) cannot be found efficiently, but can be 
checked easily	
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Very Rough Division of Time	


Algorithms (7 weeks)	

Analysis of Algorithms	

Basic Algorithmic Design Techniques	

Graph Algorithms	


Complexity & NP-completeness (2 weeks)	


Check online ���
calendar page for ���
(evolving) details 	
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Complexity Example	


Cryptography (e.g. RSA, SSL in browsers)	


Secret: p,q prime, say 512 bits each	

Public: n which equals p x q, 1024 bits	


In principle 	

there is an algorithm that given n will find p and q: ���
try all 2512 > 1.3x10154 possible p’s: kinda slow…	


In practice 	

no fast algorithm known for this problem (on non-quantum computers)	


security of RSA depends on this fact	

(“quantum computing”: strongly driven by possibility of changing this)	
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Algorithms versus Machines	


We all know about Moore’s Law and the 
exponential improvements in hardware...	


Ex: sparse linear equations over 25 years	


10 orders of magnitude improvement!	
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G.E. / CDC 3600	


CDC 6600	


CDC 7600	


Cray 1	


Cray 2	


Cray 3 (Est.)	


1960	
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 2000	


Source: Sandia, via M. Schultz"

Algorithms or Hardware?	

25 years 
progress 
solving sparse 
linear 
systems	


hardware: 4 
orders of 
magnitude	


10	


107	


106	


105	


104	


103	


102	


101	


100	


Se
co

nd
s	


G.E. / CDC 3600	
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Sparse G.E.	


Gauss-Seidel	


SOR	

CG	
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Source: Sandia, via M. Schultz"

Algorithms or Hardware?	

25 years 
progress 
solving 
sparse linear 
systems	


hardware: 4 
orders of 
magnitude	


software: 6	

orders of 
magnitude	
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Source: T.Quinn"

Algorithms or Hardware? 	


The ���
N-Body ���
Problem:	


in 30 years���
  107 hardware���
  1010 software	
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Algorithm: definition	


Procedure to accomplish a task or solve a 
well-specified problem	


Well-specified: know what all possible inputs 
look like and what output looks like given them	


“accomplish” via simple, well-defined steps	


Ex: sorting names (via comparison)	


Ex: checking for primality (via +, -, *, /, ≤)	
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Algorithms: a sample problem	


Printed circuit-board company has a robot 
arm that solders components to the board	


Time: proportional to total distance the arm 
must move from initial rest position around 
the board and back to the initial position	


For each board design, find best order to do 
the soldering	
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Printed Circuit Board	
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Printed Circuit Board	
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A Well-defined Problem	


Input: Given a set S of n points in the plane	

Output: The shortest cycle tour that visits 
each point in the set S.	


Better known as “TSP”	


How might you solve it?	




5 

17	


heuristic:���
A rule of thumb, 
simplification, or educated 
guess that reduces or limits 
the search for solutions in���
domains that are difficult and 
poorly understood.  May be 
good, but usually not 
guaranteed to give the best 
or fastest solution.	


Nearest ���
Neighbor ���
Heuristic	


Start at some point p0	

Walk first to its ���
nearest neighbor p1	

Repeatedly walk to the nearest unvisited neighbor 
p2, then p3,… until all points have been visited	


Then walk back to p0	
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Nearest Neighbor Heuristic	


p0"
p1"

p6"
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An input where it works badly	


p0"

.9"1" 2"4" 8"16"

length ~ 84	
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An input where it works badly	


p0"

.9"1" 2"4" 8"16"

optimal soln for this example���
length = 63.8	
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p0"

.9"1" 2"4" 8"16"

Revised idea - Closest pairs first	


Repeatedly join the closest pair of points	

(s.t. result can still be part of a ���
single loop in the end.  I.e., join ���
endpoints, but not points in middle, ���
of path segments already created.)	


How does this work on our bad example?	


?	
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Another bad example	


1"

1.5" 1.5"
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Another bad example	


1"

1.5" 1.5"

6+√10 = 9.16  "

vs "

8"

24	


Something that works	


“Brute Force Search”:	

For each of the n! = n(n-1)(n-2)…1 orderings of the 
points, check the length of the cycle you get	

Keep the best one	
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Two Notes	


The two incorrect algorithms were greedy	

Often very natural & tempting ideas	

They make choices that look great “locally” (and never 
reconsider them)	


When greed works, the algorithms are typically efficient	

BUT: often does not work - you get boxed in	


Our correct alg avoids this, but is incredibly slow	

20!  is so large that checking one billion orderings per 
second would take 2.4 billion seconds (around 70 years!)	

And growing: n!  ~  √2 π n   •  (n/e)n   ~  2O(n log n)	
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Something that “works” (differently)	


1. Find Min Spanning Tree	
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Something that “works” (differently)	


2. Walk around it	
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3. Take shortcuts (instead of revisiting)	


Something that “works” (differently)	
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Something that “works” (differently): 
Guaranteed Approximation	


Does it seem wacky?	

Maybe, but it’s always within a factor of 2 of 
the best tour!	


deleting one edge from best tour gives a 
spanning tree, so Min spanning tree < best tour	


best tour ≤ wacky tour ≤ 2 * MST < 2 * best	


triangle inequality	
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The Morals of the Story	


Algorithms are important	

    Many performance gains outstrip Moore’s law	

Simple problems can be hard 	


Factoring, TSP	


Simple ideas don’t always work 	

Nearest neighbor, closest pair heuristics	


Simple algorithms can be very slow	

Brute-force factoring, TSP	


Changing your objective can be good	

Guaranteed approximation for TSP	


And: for some problems, even the best algorithms are slow	



