
1

1	

CSE 421: Intro Algorithms	

Fall 2011	

Graphs and Graph Algorithms	

Slides by Larry Ruzzo	

Goals	

Graphs: defns, examples, utility, terminology	

Representation: input, internal	

Traversal: Breadth- & Depth-first search	

Three Algorithms:	

	
Connected components	

	
Bipartiteness	

	
Topological sort	

2	
 3	

Meg Ryan was in  
"French Kiss"  

with Kevin Kline"

Meg Ryan was in  
"Sleepless in Seattle" 

with Tom Hanks"

Kevin Bacon was in  
"Apollo 13"  

with Tom Hanks "

4	

Objects & Relationships	

The Kevin Bacon Game:	

Obj: Actors	

Rel: Two are related if they've been in a movie together	

Exam Scheduling:	

Obj: Classes	

Rel: Two are related if they have students in common	

Traveling Salesperson Problem:	

Obj: Cities	

Rel: Two are related if can travel directly between them	

5	

Graphs 	
	

An extremely important formalism for
representing (binary) relationships	

Objects: "vertices," aka "nodes"	

Relationships between pairs: "edges," aka
"arcs"	

Formally, a graph G = (V, E) is a pair of sets,
V the vertices and E the edges	

6	

Undirected Graph G = (V,E)	

1

2
10

9

8

3

4

5
6

7

11
12

13

2

7	

Undirected Graph G = (V,E)	

1

2
10

9

8

3

4

5
6

7

11
12

13

8	

Undirected Graph G = (V,E)	

1

2
10

9

8

3

4

5
6

7

11
12

13

9	

Undirected Graph G = (V,E)	

1

2
10

9

8

3

4

5
6

7

11
12

13

"self- 
loop""

"multi-"
 edge""

10	

Undirected Graph G = (V,E)	

1

2
10

9

8

3

4

5
6

7

11
12

13

"self- 
loop""

"multi-"
 edge""

11	

Graphs don't live in Flatland	

Geometrical drawing is mentally ���
convenient, but mathematically���
irrelevant: 4 drawings, 1 graph.	

A

7 4

3
A

7 4

3

A

7 4

3

A

7 4

3

12	

Directed Graph G = (V,E)	

1

2
10

9

8

3

4

5
6

7

11
12

13

3

13	

Directed Graph G = (V,E)	

1

2
10

9

8

3

4

5
6

7

11
12

13

14	

Directed Graph G = (V,E)	

1

2
10

9

8

3

4

5
6

7

11
12

13

15	

Directed Graph G = (V,E)	

1

2
10

9

8

3

4

5
6

7

11
12

13

"self- 
loop""

"multi-"
 edge""

16	

Directed Graph G = (V,E)	

1

2
10

9

8

3

4

5
6

7

11
12

13

"self- 
loop""

"multi-"
 edge""

17	

A

7 4

3

Specifying undirected ���
graphs as input	

What are the vertices?	

Explicitly list them: ���
{"A", "7", "3", "4"}	

What are the edges?	

Either, set of edges ���
{{A,3}, {7,4}, {4,3}, {4,A}}	

Or, (symmetric) adjacency
matrix:	

!

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

18	

A

7 4

3

Specifying directed ���
graphs as input	

What are the vertices?	

Explicitly list them: ���
{"A", "7", "3", "4"}	

What are the edges?	

Either, set of directed edges:
{(A,4), (4,7), (4,3), (4,A), (A,3)}	

Or, (nonsymmetric)
adjacency matrix:	

!

A 7 3 4
A 0 0 1 1
7 0 0 0 0
3 0 0 0 0
4 1 1 1 0

4

19	

Let G be an undirected graph with n vertices and m
edges. How are n and m related?	

	
 	
	

# Vertices vs # Edges	

20	

Let G be an undirected graph with n vertices and m
edges. How are n and m related?	

Since 	

every edge connects two different vertices (no loops),
and no two edges connect the same two vertices (no
multi-edges), 	

it must be true that: ���

	
 	
 0 ≤ m ≤ n(n-1)/2 = O(n2)	

# Vertices vs # Edges	

21	

More Cool Graph Lingo	

A graph is called sparse if m ≪ n2, otherwise it is
dense	

Boundary is somewhat fuzzy; O(n) edges is certainly
sparse, Ω(n2) edges is dense.	

Sparse graphs are common in practice	

E.g., all planar graphs are sparse (m ≤ 3n-6, for n ≥ 3)	

Q: which is a better run time, O(n+m) or O(n2)?	

A: O(n+m) = O(n2), but n+m usually way better!	

22	

Representing Graph G = (V,E) ���

Vertex set V = {v1, …, vn}	

Adjacency Matrix A	

A[i,j] = 1 iff (vi,vj) ∈ E	

Space is n2 bits	

Advantages: 	

O(1) test for presence or absence of edges.	

Disadvantages: inefficient for sparse graphs, both in
storage and access	

m ≪ n2"

!

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

A

7 4 3

internally, indp of input format"

23	

Representing Graph G=(V,E) ���
n vertices, m edges	

Adjacency List:	

O(n+m) words	

Advantages:	

Compact for ���
sparse graphs	

Easily see all edges	

Disadvantages	

More complex data structure 	

no O(1) edge test	

7"

7"

v3"

v2"

v1"

vn"

2" 6"

2" 4"
3"
5"

1"

24	

Representing Graph G=(V,E) ���
n vertices, m edges	

Adjacency List:	

O(n+m) words	

Back- and cross pointers more work to build, but
allow easier traversal and deletion of edges, if
needed, (don't bother if not)	

1"

7"

v3"

v2"

v1"

v7"

2" 6"

2" 4"
3"
5"

1"

5

25	

Graph Traversal	

Learn the basic structure of a graph	

"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s	

Being orderly helps. Two common ways:	

Breadth-First Search: order the nodes in
successive layers based on distance from s	

Depth-First Search: more natural approach for
exploring a maze; many efficient algs build on it.	
 26	

Breadth-First Search	

Completely explore the vertices in order of
their distance from s	

Naturally implemented using a queue	

27	

Graph Traversal: Implementation	

Learn the basic structure of a graph	

"Walk," via edges, from a fixed starting vertex
s to all vertices reachable from s	

Three states of vertices	

undiscovered	

discovered	

fully-explored	

28	

BFS(s) Implementation	

Global initialization: mark all vertices "undiscovered" 	

BFS(s) 	

mark s "discovered"	

queue = { s }	

while queue not empty	

u = remove_first(queue)	

for each edge {u,x}	

if (x is undiscovered) 	

mark x discovered	

append x on queue	

mark u fully explored	

Exercise: modify
code to number
vertices & compute
level numbers"

29	

BFS(v)	

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:!
1 !

30	

BFS(v)	

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:!
2 3 !

6

31	

BFS(v)	

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:!
3 4!

32	

BFS(v)	

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:!
4 5 6 7!

33	

BFS(v)	

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:!
5 6 7 8 9!

34	

BFS(v)	

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:!
8 9 10 11!

35	

BFS(v)	

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:!
10 11 12 13!

36	

BFS(v)	

1

2 3

10

5

4

9

12
8

13

6
7

11

Queue:!

7

37	

BFS: Analysis, I	

Global initialization: mark all vertices "undiscovered" 	

BFS(s) 	

mark s "discovered"	

queue = { s }	

while queue not empty	

u = remove_first(queue)	

for each edge {u,x}	

if (x is undiscovered) 	

mark x discovered	

append x on queue	

mark u fully explored	

Simple analysis: ���
2 nested loops.
Get worst-case
number of
iterations of
each; multiply. 	

O(n)	

+	

O(1)	

+	

O(n)	

x	

O(n)	

=	

O(n2)	
 38	

BFS: Analysis, II	

Above analysis correct, but pessimistic (can't have ���
Ω(n) edges incident to each of Ω(n) distinct "u"
vertices if G is sparse). Alt, more global analysis:	

Each edge is explored once ���
from each end-point, so total ���
runtime of inner loop is O(m).	

Total O(n+m), n = # nodes, m = # edges	

Exercise: extend
algorithm and
analysis to non-
connected graphs	

39	

Properties of (Undirected) BFS(v)	

BFS(v) visits x if and only if there is a path in G from
v to x.	

Edges into then-undiscovered vertices define a tree
– the "breadth first spanning tree" of G	

Level i in this tree are exactly those vertices ���
u such that the shortest path (in G, not just the ���

tree) from the root v is of length i.	

All non-tree edges join vertices on the ���
same or adjacent levels	

not true
of every
spanning
tree!	

40	

BFS Application: Shortest Paths	

1

2 3

10

5

4

9

12
8

13

6
7

11

0"

1"

2"

3"

4"
can label by distances from start 

all edges connect same/adjacent levels"

Tree (solid edges)  
gives shortest "
paths from  
start vertex"

41	

Tree (solid edges)  
gives shortest "
paths from  
start vertex"

BFS Application: Shortest Paths	

1

2 3

10

5

4

9

8

13

6 7

11

0"

1"

2"

3"

4"
can label by distances from start 

all edges connect same/adjacent levels"

12

42	

Tree (solid edges)  
gives shortest "
paths from  
start vertex"

BFS Application: Shortest Paths	

1

2 3

10

5
4

9

8

13

6 7

11

0"

1"

2"

3"

4" can label by distances from start 
all edges connect same/adjacent levels"

12

8

43	

Tree (solid edges)  
gives shortest "
paths from  
start vertex"

BFS Application: Shortest Paths	

1

2 3

10

5 4

9 8

13

6 7

11

0"

1"

2"

3"

4" can label by distances from start 
all edges connect same/adjacent levels"

12
44	

Why fuss about trees?	

Trees are simpler than graphs	

Ditto for algorithms on trees vs algs on graphs	

So, this is often a good way to approach a graph
problem: find a "nice" tree in the graph, i.e., one
such that non-tree edges have some simplifying
structure	

E.g., BFS finds a tree s.t. level-jumps are minimized	

DFS (below) finds a different tree, but it also has
interesting structure…	

45	

Graph Search Application:
Connected Components	

Want to answer questions of the form:	

given vertices u and v, is there a ���
path from u to v?	

Set up one-time data structure to answer such
questions efficiently.	

46	

Q: Why not
create 2-d
array Path
[u,v]?"

Graph Search Application:
Connected Components	

Want to answer questions of the form:	

given vertices u and v, is there a ���
path from u to v?	

Idea: create array A such that 	

A[u] = smallest numbered vertex that���
is connected to u. Question reduces ���
to whether A[u]=A[v]?	

47	

Graph Search Application:
Connected Components	

initial state: all v undiscovered���
for v = 1 to n do���
	
if state(v) != fully-explored then
	
 	
BFS(v): setting A[u] ←v for each u found ���
	
 	
(and marking u discovered/fully-explored) ���
	
endif

endfor	

Total cost: O(n+m)	

each edge is touched a constant number of times (twice)	

works also with DFS	

3.4 Testing Bipartiteness	

9

49	

Bipartite Graphs	

Def. An undirected graph G = (V, E) is 	

bipartite (2-colorable) if the nodes can be���
colored red or blue such that no edge
has both ends the same color.	

Applications.	

Stable marriage: men = red, women = blue	

Scheduling: machines = red, jobs = blue	

a bipartite graph	

"bi-partite" means
"two parts." An
equivalent definition:
G is bipartite if you
can partition the
node set into 2 parts
(say, blue/red or left/
right) so that all
edges join nodes in
different parts/no
edge has both ends
in the same part.

50	

Testing Bipartiteness	

Testing bipartiteness. Given a graph G, is it bipartite?	

Many graph problems become:	

easier if the underlying graph is bipartite (matching)	

tractable if the underlying graph is bipartite (independent set)	

Before attempting to design an algorithm, we need to
understand structure of bipartite graphs.	

v1	

v2	
 v3	

v6	
 v5	
 v4	

v7	

v2	

v4	

v5	

v7	

v1	

v3	

v6	

a bipartite graph G	
 another drawing of G	

51	

An Obstruction to Bipartiteness	

Lemma. If a graph G is bipartite, it cannot contain an
odd length cycle.	

Pf. Impossible to 2-color the odd cycle, let alone G.	

bipartite���
(2-colorable)	

not bipartite���
(not 2-colorable)	

not bipartite���
(not 2-colorable)	

52	

Case (i)	

L1	
 L2	
 L3	

Case (ii)	

L1	
 L2	
 L3	

Bipartite Graphs	

Lemma. Let G be a connected graph, and let L0, …, Lk be the
layers produced by BFS starting at node s. Exactly one of the
following holds.	

(i) No edge of G joins two nodes of the same layer, and
G is bipartite.	

(ii) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).	

53	

Case (i)	

L1	
 L2	
 L3	

Bipartite Graphs	

Lemma. Let G be a connected graph, and let L0, …, Lk be the
layers produced by BFS starting at node s. Exactly one of the
following holds.	

(i) No edge of G joins two nodes of the same layer, and
G is bipartite.	

(ii) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).	

Pf. (i)	

Suppose no edge joins two nodes in the same layer.	

By previous lemma, all edges join nodes on adjacent levels.	

	
 	
 	
 	
Bipartition: ���
	
 	
 	
 	
 red = nodes on odd levels, ���
	
 	
 	
 	
 blue = nodes on even levels.	

54	

z = lca(x, y)	

(x, y)	
 path from ���
y to z	

path from ���
z to x	

Bipartite Graphs	

Lemma. Let G be a connected graph, and let L0, …, Lk be the
layers produced by BFS starting at node s. Exactly one of the
following holds.	

(i) No edge of G joins two nodes of the same layer, and
G is bipartite.	

(ii) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite).	

Pf. (ii)	

Suppose (x, y) is an edge & x, y in same level Lj.	

Let z = their lowest common ancestor in BFS tree.	

Let Li be level containing z.	

Consider cycle that takes edge from x to y, ���
then tree from y to z, then tree from z to x.	

Its length is 1 + (j-i) + (j-i), which is odd.	

10

55	

Obstruction to Bipartiteness	

Cor: A graph G is bipartite iff it contains no odd
length cycle.	

5-cycle C	

bipartite���
(2-colorable)	

not bipartite���
(not 2-colorable)	

NB: the proof is algorithmic–it
finds a coloring or odd cycle.

3.6 DAGs and Topological Ordering	

57	

Precedence Constraints	

Precedence constraints. Edge (vi, vj) means task vi
must occur before vj.	

Applications	

Course prerequisites: course vi must be taken before vj	

Compilation: must compile module vi before vj	

Computing workflow: output of job vi is input to job vj	

Manufacturing or assembly: sand it before you paint it…	

Spreadsheet evaluation order: if A7 is "=A6+A5+A4",
evaluate them first	

58	

Directed Acyclic Graphs	

Def. A DAG is a directed acyclic graph, i.e., one that
contains no directed cycles.	

Ex. Precedence constraints: edge (vi, vj) means vi must
precede vj.	

Def. A topological order of a directed graph G = (V, E) is an
ordering of its nodes as v1, v2, …, vn so that for every edge
(vi, vj) we have i < j.	

a DAG	

a topological ordering of that DAG–���
all edges left-to-right	

v2	
 v3	

v6	
 v5	
 v4	

v7	
 v1	

v1	
 v2	
 v3	
 v4	
 v5	
 v6	
 v7	

E.g., ∀edge (vi, vj), finish���
 vi before starting vj	

59	

Directed Acyclic Graphs	

Lemma. If G has a topological order, then G is a DAG.	

Pf. (by contradiction)	

Suppose that G has a topological order v1, …, vn ���
and that G also has a directed cycle C.	

Let vi be the lowest-indexed node in C, and let vj be the node just
before vi; thus (vj, vi) is an edge.	

By our choice of i, we have i < j.	

On the other hand, since (vj, vi) is an edge and v1, …, vn is a topological
order, we must have j < i, a contradiction.	

v1	
 vi	
 vj	
 vn	

the supposed topological order: v1, …, vn	

the directed cycle C	

if all edges go L→R,
you can't loop back
to close a cycle 	

60	

Directed Acyclic Graphs	

Lemma. 	

 If G has a topological order, then G is a DAG.	

Q. Does every DAG have a topological ordering?	

Q. If so, how do we compute one?	

11

61	

Directed Acyclic Graphs	

Lemma. If G is a DAG, then G has a node with no incoming edges.	

Pf. (by contradiction)	

Suppose that G is a DAG and every node has at least one incoming
edge. Let's see what happens.	

Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.	

Then, since u has at least one incoming edge (x, u), we can walk
backward to x.	

Repeat until we visit a node, say w, twice.	

Let C be the sequence of nodes encountered ���
between successive visits to w. C is a cycle.	

w	
 x	
 u	
 v	

Why must
this happen?	

C	

62	

Directed Acyclic Graphs	

Lemma. If G is a DAG, then G has a topological ordering.	

Pf. (by induction on n)	

Base case: true if n = 1.	

Given DAG on n > 1 nodes, find a node v with no incoming edges.	

G - { v } is a DAG, since deleting v cannot create cycles.	

By inductive hypothesis, G - { v } has a topological ordering.	

Place v first in topological ordering; then append nodes of G - { v }	

in topological order. This is valid since v has no incoming edges. ▪	

DAG	

v	

63	

v1	

Topological Ordering Algorithm: Example	

Topological order: 	

v2	
 v3	

v6	
 v5	
 v4	

v7	
 v1	

64	

v2	

Topological Ordering Algorithm: Example	

Topological order: v1	

v2	
 v3	

v6	
 v5	
 v4	

v7	

65	

v3	

Topological Ordering Algorithm: Example	

Topological order: v1, v2	

v3	

v6	
 v5	
 v4	

v7	

66	

v4	

Topological Ordering Algorithm: Example	

Topological order: v1, v2, v3	

v6	
 v5	
 v4	

v7	

12

67	

v5	

Topological Ordering Algorithm: Example	

Topological order: v1, v2, v3, v4	

v6	
 v5	

v7	

68	

v6	

Topological Ordering Algorithm: Example	

Topological order: v1, v2, v3, v4, v5	

v6	

v7	

69	

v7	

Topological Ordering Algorithm: Example	

Topological order: v1, v2, v3, v4, v5, v6	

v7	

70	

Topological order: v1, v2, v3, v4, v5, v6, v7.	

v2	
 v3	

v6	
 v5	
 v4	

v7	
 v1	

v1	
 v2	
 v3	
 v4	
 v5	
 v6	
 v7	

Topological Ordering Algorithm: Example	

71	

Topological Sorting Algorithm	

Maintain the following:	

count[w] = (remaining) number of incoming edges to node w	

S = set of (remaining) nodes with no incoming edges	

Initialization: 	

count[w] = 0 for all w	

count[w]++ for all edges (v,w) 	
O(m + n)	

S = S ∪ {w} for all w with count[w]==0	

Main loop: 	

while S not empty	

remove some v from S	

make v next in topo order 	
O(1) per node	

for all edges from v to some w 	
O(1) per edge	

decrement count[w]	

add w to S if count[w] hits 0	

Correctness: clear, I hope	

Time: O(m + n) (assuming edge-list representation of graph)	

72	

Depth-First Search	

Follow the first path you find as far as you can go	

Back up to last unexplored edge when you reach a
dead end, then go as far you can 	

Naturally implemented using recursive calls or a
stack	

13

73	

Non-tree edges	

All non-tree edges join a vertex and one of
its descendents/ancestors in the DFS tree	

No cross edges!	

74	

DFS(v) – Recursive version	

Global Initialization: 	

for all nodes v, v.dfs# = -1 	
// mark v "undiscovered" ���
dfscounter = 0	

DFS(v) 	

v.dfs# = dfscounter++ 	
// v "discovered", number it	

for each edge (v,x)	

	
if (x.dfs# = -1) 	
// tree edge (x previously undiscovered)	

	
 	
DFS(x)	

	
else … 	
// code for back-, fwd-, parent,	

	
 	
 	
// edges, if needed	

	
 	
 	
// mark v "completed," if needed	
 75	

Why fuss about trees (again)?	

BFS tree ≠ DFS tree, but, as with BFS, DFS
has found a tree in the graph s.t. non-tree
edges are "simple" – only descendant/
ancestor	

76	

DFS(v) - explicit stack	

Global Initialization: mark all vertices "undiscovered"	

DFS(v) 	

mark v "discovered"	

push (v,1) onto empty stack 	

while stack not empty	

(u,i) = pop(stack)	

for (; i ≤ # of neighbors of u; i++)	

	
x = ith edge on u's edge list	

	
if (x is undiscovered) 	

mark x "discovered"	

push (u,i+1) 	
// save info to resume with u's next edge,	

u = x 	
 	
// after exploring from x,	

i = 1 	
 	
// (starting with its first edge)	

mark u completed	

Exercise: modify to compute
vertex numbering"

Idea: stack of unfinished
vertices, plus pointers into
their edge lists to say what
work remains to finish."

77	

DFS(A)	

A,1

B J

I

H

C

G

F D

E

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack"
"(Edge list):"

A"(B,J)"

78	

DFS(A)	

A,1

B,2 J

I

H

C

G

F D

E

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"

14

79	

DFS(A)	

A,1

B,2 J

I

H

C,3

G

F D

E

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A (B,J)"
B (A,C,J)"
C"(B,D,G,H)"

80	

DFS(A)	

A,1

B,2 J

I

H

C,3

G

F D,4

E

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"

81	

DFS(A)	

A,1

B,2 J

I

H

C,3

G

F D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"

82	

DFS(A)	

A,1

B,2 J

I

H

C,3

G

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"
F"(D,E,G)"

83	

DFS(A)	

A,1

B,2 J

I

H

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"
F"(D,E,G)"
G"(C,F)"

84	

DFS(A)	

A,1

B,2 J

I

H

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"
F"(D,E,G)"
G"(C,F)"

15

85	

DFS(A)	

A,1

B,2 J

I

H

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"
F"(D,E,G)"

86	

DFS(A)	

A,1

B,2 J

I

H

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"

87	

DFS(A)	

A,1

B,2 J

I

H

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"

88	

DFS(A)	

A,1

B,2 J

I

H

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"

89	

DFS(A)	

A,1

B,2 J

I

H

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"

90	

DFS(A)	

A,1

B,2 J

I

H,8

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"

16

91	

DFS(A)	

A,1

B,2 J

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
I "(H)"

92	

DFS(A)	

A,1

B,2 J

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
I "(H)"

93	

DFS(A)	

A,1

B,2 J

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"

94	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"

95	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
K"(J,L)"

96	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
K"(J,L)"
L"(J,K,M)"

17

97	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
K"(J,L)"
L"(J,K,M)"
M"(L) "

98	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
K"(J,L)"
L"(J,K,M)"

99	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
K"(J,L)"

100	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"

101	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"

102	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"

18

103	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"

104	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"

105	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"

106	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"

107	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"

108	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Suppose edge lists"
at each vertex  
are sorted
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

"TA-DA!!"

19

109	

DFS(A)	

A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6 D,4

E,5

K,11 L,12

M,13

Edge code:!
Tree edge!
Back edge"

110	

DFS(A)	
 A,1

B,2
J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11 L,12

M,13

Edge code:!
Tree edge!
Back edge"

111	

DFS(A)	
 A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:!
Tree edge!
Back edge"

112	

DFS(A)	

A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:!
Tree edge!
Back edge"

113	

DFS(A)	

A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11

L,12

M,13

Edge code:!
Tree edge!
Back edge"

114	

DFS(A)	

A,1

B,2

J,10

I,9

H,8

C,3

G,7 F,6

D,4

E,5 K,11

L,12

M,13

Edge code:!
Tree edge!
Back edge"

20

115	

DFS(A)	

A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:!
Tree edge!
Back edge!
No Cross Edges!"

116	

Properties of (Undirected) DFS(v)	

Like BFS(v):	

DFS(v) visits x if and only if there is a path in G from v to
x (through previously unvisited vertices)	

Edges into then-undiscovered vertices define a tree –
the "depth first spanning tree" of G	

Unlike the BFS tree: 	

the DF spanning tree isn't minimum depth	

its levels don't reflect min distance from the root	

non-tree edges never join vertices on the same or
adjacent levels	

BUT…	

117	

Non-tree edges	

All non-tree edges join a vertex and one of
its descendents/ancestors in the DFS tree	

No cross edges!	

118	

DFS(v) – Recursive version	

Global Initialization: 	

for all nodes v, v.dfs# = -1 	
// mark v "undiscovered" ���
dfscounter = 0	

DFS(v) 	

v.dfs# = dfscounter++ 	
// v "discovered", number it	

for each edge (v,x)	

	
if (x.dfs# = -1) 	
// tree edge (x previously undiscovered)	

	
 	
DFS(x)	

	
else … 	
// code for back-, fwd-, parent,	

	
 	
 	
// edges, if needed	

	
 	
 	
// mark v "completed," if needed	
 119	

Why fuss about trees (again)?	

As with BFS, DFS has found a tree in the
graph s.t. non-tree edges are "simple"--only
descendant/ancestor	

120	

A simple problem on trees	

Given: tree T, a value L(v) defined for every
vertex v in T���
Goal: find M(v), the min value of L(v)
anywhere in the subtree rooted at v
(including v itself). ���
How?	

21

121	

!

M(v) =
L(v) if v is a leaf
min(L(v), minw a child of v M(w)) otherwise
"

$

%
&
'

A simple problem on trees	

Given: tree T, a value L(v) defined for every
vertex v in T���
Goal: find M(v), the min value of L(v)
anywhere in the subtree rooted at v
(including v itself). ���
How? Depth first search, using:	

122	

Application: Articulation Points	

A node in an undirected graph is an
articulation point iff removing it
disconnects the graph	

articulation points represent vulnerabilities in
a network – single points whose failure would
split the network into 2 or more
disconnected components	

123	

Ram Samudrala/Jason McDermott Articulation point proteins

Identifying key proteins on the anthrax predicted network

124	

Articulation Points	

1

2 10

9

8

3

7

6
4

5

11
12

13

articulation point  
iff its removal  

disconnects 
the graph"

125	

Articulation Points	

1

2 10

9

8

3

7

6
4

5

11
12

13

126	

Brainstorming	

draw a graph, ~ 10 nodes, A-J	

redraw as via DFS, starting at "E"	

add dsf#s & tree/back edges (solid/dashed) 	

find cycles	

give alg to find cycles via dfs; does G have any?	

find articulation points	

what do cycles have to do with articulation points?	

alg to find articulation points via DFS???	

22

127	

Simple Case: Artic. Pts in a tree 	

Leaves – never articulation points	

Internal nodes – always articulation points	

Root – articulation point if and only if two or
more children	

Non-tree: extra edges remove some
articulation points (which ones?)	

128	

Articulation Points from DFS	

Root node is an articulation point ���
iff it has more than one child	

Leaf is never an articulation point	

∃ some child y of u s.t.
no non-tree edge goes
above u from y or below"

non-leaf, non-root"
node u is an "
articulation point"⇔

u"
x"

If removal of u does NOT
separate x, there must be an
exit from x's subtree. How?
Via back edge.	

y"

129	

Articulation Points: ���
the "LOW" function	

Definition: LOW(v) is the lowest dfs# of any ���
vertex that is either in the dfs subtree rooted at v
(including v itself) or connected to a vertex in that
subtree by a back edge.	

LOW(v) =���
 min ({dfs#(v)} ∪ {LOW(w) | w a child of v } ∪ ���
 { dfs#(x) | {v,x} is a back edge from v })	

v articulation point iff…	

trivial"

critic
al"

130	

Articulation Points	

A

B

H G

E

C

K

I

D

F

J
L

M

Vertex! DFS # !Low!
A !!
B !!
C !!
D !!
E !!
F !!
G !!
H !!
I !!
J !!
K !!
L !!
M !!

131	

Articulation Points	

A

B

H G

E

C

K

I

D

F

J
L

M

1

13

12

7

11
6

10
9 5

8 4

3

2 Vertex! DFS # !Low!
A !1 !1!
B !2 !1!
C !3 !1!
D !4 !3!
E !8 !1!
F !5 !3!
G !9 !9!
H !10 !1!
I !6 !3!
J !11 !10!
K !7 !3!
L !12 !10!
M !13 !13!

132	

DFS(v) for���
Finding Articulation Points	

Global initialization: v.dfs# = -1 for all v.	

DFS(v) 	

v.dfs# = dfscounter++	

v.low = v.dfs# 	
 	
// initialization	

for each edge {v,x}	

	
if (x.dfs# == -1) 	
// x is undiscovered	

	
 	
DFS(x)	

	
 	
v.low = min(v.low, x.low)	

	
 	
if (x.low >= v.dfs#)	

	
 	
 	
print "v is art. pt., separating x"	

	
else if (x is not v's parent)	

	
 	
v.low = min(v.low, x.dfs#)	

Equiv: "if({v,x}
is a back edge)" 
Why?"

Except for root. W
hy?"

23

Summary	

Graphs –abstract relationships among pairs of objects	

Terminology – node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected	

Representation – edge list, adjacency matrix	

Nodes vs Edges – m = O(n2), often less	

BFS – Layers, queue, shortest paths, all edges go to same or

adjacent layer	

DFS – recursion/stack; all edges ancestor/descendant	

Algorithms – connected components, bipartiteness,

topological sort, articulation points 	

133	
 134	

3' UTR	

135	

Articulation Points	

A

B

H

F C

D E

Vertex! DFS # !Low!
A ! !!
B ! !!
C ! !!
D ! !!
E ! !!
F ! !!
G !!
H ! ! !

AP's:!
BCC's: !
 1)!
 2)!
 3)!
 4) !G

136	

Articulation Points	

A

B

H

F C

D E

1

6

8 5 7 4

3

2

Vertex! DFS # !Low!
A !1 !1!
B !2 !1!
C !3 !3!
D !4 !3!
E !5 !3!
F !6 !1!
G !7 !6!
H !8 !6!

AP's: C, B, F!
BCC's: !
 1) C--D, D--E, E--C!
 2) B--C!
 3) A--B, B--F, F--A!
 4) F--G, G--H, H--F!G

137	

BFS(v)	

1

2 3

10

5

4

9

12
8

13

6
7

11

138	

DFS(v)	

1

2 10

9

8

3

7

6 4

5

11 12

13

24

139	

Articulation Points from DFS	

Every interior vertex of a tree is an articulation
point	

Non-tree edges eliminate articulation points	

Leaves are never articulation points	

Root node is an articulation point iff it has more
than one child	

no non-tree edge goes "
above u from a sub-tree
below some child of u"

non-leaf, non-root"
node u is an "
articulation point"

⇔

140	

DFS Application: ���
Articulation Points	
1

2

9

8

3

7
6

4

5

10

11
12

13
leaves are not articulation points"

articulation points & reasons"
3 sub-tree at 4"
8 sub-tree at 9"

10 sub-tree at 11"
12 sub-tree at 13"

non-tree edges matched "
with vertices they eliminate"

root has one child"

141	

Articulation Points: ���
Some Subtleties	
1

2

9

8

3

7
6

4

5

10

11
12

13

non-tree edges matched "
with vertices they eliminate."

4, 5, 6 should be
eliminated, "
yet are unmatched."

They need to inherit
information from child 7"

142	

DFS Vertex Numbering	

If u is an ancestor of v in the DFS tree, then
dfs#(u) < dfs#(v).	

