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CSE 421: Intro Algorithms	


Fall 2011	

Graphs and Graph Algorithms	


Slides by Larry Ruzzo	


Goals	


Graphs: defns, examples, utility, terminology	

Representation: input, internal	

Traversal: Breadth- & Depth-first search	


Three Algorithms:	

	
Connected components	

	
Bipartiteness	

	
Topological sort	
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Meg Ryan was in  
"French Kiss"  

with Kevin Kline"

Meg Ryan was in  
"Sleepless in Seattle" 

with Tom Hanks"

Kevin Bacon was in  
"Apollo 13"  

with Tom Hanks "
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Objects & Relationships	


The Kevin Bacon Game:	

Obj: Actors	

Rel: Two are related if they've been in a movie together	


Exam Scheduling:	

Obj: Classes	

Rel: Two are related if they have students in common	


Traveling Salesperson Problem:	

Obj: Cities	

Rel: Two are related if can travel directly between them	
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Graphs 	
	


An extremely important formalism for 
representing (binary) relationships	


Objects: "vertices," aka "nodes"	

Relationships between pairs: "edges," aka 
"arcs"	

Formally, a graph G = (V, E) is a pair of sets, 
V the vertices and E the edges	
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Undirected Graph   G = (V,E)	
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Undirected Graph   G = (V,E)	
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Undirected Graph   G = (V,E)	
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Undirected Graph   G = (V,E)	
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Graphs don't live in Flatland	

Geometrical drawing is mentally ���
convenient, but mathematically���
irrelevant: 4 drawings, 1 graph.	
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Directed Graph G = (V,E)	
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Directed Graph G = (V,E)	
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Directed Graph G = (V,E)	
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A 

7 4 

3 

Specifying undirected ���
graphs as input	


What are the vertices?	

Explicitly list them: ���
{"A", "7", "3", "4"}	


What are the edges?	

Either, set of edges ���
{{A,3}, {7,4}, {4,3}, {4,A}}	

Or, (symmetric) adjacency 
matrix:	


! 

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0
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A 

7 4 

3 

Specifying directed ���
graphs as input	


What are the vertices?	

Explicitly list them: ���
{"A", "7", "3", "4"}	


What are the edges?	

Either, set of directed edges:  
{(A,4), (4,7), (4,3), (4,A), (A,3)}	

Or, (nonsymmetric) 
adjacency matrix:	


! 

A 7 3 4
A 0 0 1 1
7 0 0 0 0
3 0 0 0 0
4 1 1 1 0
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Let G be an undirected graph with n vertices and m 
edges.  How are n and m related?	


	
   	
	


# Vertices vs # Edges	
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Let G be an undirected graph with n vertices and m 
edges.  How are n and m related?	

Since 	


every edge connects two different vertices (no loops), 
and no two edges connect the same two vertices (no 
multi-edges), 	


it must be true that: ���

	
   	
 0 ≤ m ≤ n(n-1)/2 = O(n2)	


# Vertices vs # Edges	
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More Cool Graph Lingo	


A graph is called sparse if m ≪ n2, otherwise it is 
dense	


Boundary is somewhat fuzzy; O(n) edges is certainly 
sparse, Ω(n2) edges is dense.	


Sparse graphs are common in practice	

E.g., all planar graphs are sparse (m ≤ 3n-6, for n ≥ 3)	


Q: which is a better run time, O(n+m) or O(n2)?	


A: O(n+m) = O(n2), but n+m usually way better!	
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Representing Graph  G = (V,E) ���

Vertex set V = {v1, …, vn}	


Adjacency Matrix   A	

A[i,j] = 1 iff (vi,vj) ∈ E	

Space is n2 bits	


Advantages: 	

O(1) test for presence or absence of edges.	


Disadvantages: inefficient for sparse graphs, both in 
storage and access	


m ≪ n2"

! 

A 7 3 4
A 0 0 1 1
7 0 0 0 1
3 1 0 0 1
4 1 1 1 0

A 

7 4 3 

internally, indp of input format"
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Representing Graph  G=(V,E) ���
n vertices,  m edges	


Adjacency List:	

O(n+m) words	


Advantages:	

Compact for ���
sparse graphs	


Easily see all edges	


Disadvantages	

More complex data structure 	


no O(1) edge test	


7"

7"

v3"

v2"

v1"

vn"

2" 6"

2" 4"
3"
5"

1"
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Representing Graph  G=(V,E) ���
n vertices,  m edges	


Adjacency List:	

O(n+m) words	


Back- and cross pointers more work to build, but 
allow easier traversal and deletion of edges, if 
needed,  (don't bother if not)	
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Graph Traversal	


Learn the basic structure of a graph	

"Walk," via edges, from a fixed starting vertex 
s to all vertices reachable from s	


Being orderly helps.  Two common ways:	

Breadth-First Search: order the nodes in 
successive layers based on distance from s	


Depth-First Search: more natural approach for 
exploring a maze; many efficient algs build on it.	
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Breadth-First Search	


Completely explore the vertices in order of 
their distance from s	


Naturally implemented using a queue	
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Graph Traversal: Implementation	


Learn the basic structure of a graph	

"Walk," via edges, from a fixed starting vertex 
s to all vertices reachable from s	


Three states of vertices	

undiscovered	

discovered	

fully-explored	
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BFS(s) Implementation	


Global initialization: mark all vertices "undiscovered" 	

BFS(s) 	


mark  s "discovered"	

queue = { s }	

while queue not empty	


u = remove_first(queue)	

for each edge {u,x}	


if (x is undiscovered) 	

mark x discovered	

append x on queue	


mark u fully explored	


Exercise: modify 
code to number 
vertices & compute 
level numbers"
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BFS(v)	
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BFS(v)	
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BFS(v)	
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BFS(v)	
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BFS(v)	
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BFS(v)	
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BFS(v)	
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BFS(v)	
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BFS: Analysis, I	

Global initialization: mark all vertices "undiscovered" 	

BFS(s) 	


mark  s "discovered"	

queue = { s }	

while queue not empty	


u = remove_first(queue)	

for each edge {u,x}	


if (x is undiscovered) 	

mark x discovered	

append x on queue	


mark u fully explored	


Simple analysis: ���
2 nested loops.   
Get worst-case 
number of 
iterations of 
each; multiply. 	


O(n)	


+	


O(1)	

+	


O(n)	


x	


O(n)	


=	

O(n2)	
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BFS: Analysis, II	


Above analysis correct, but pessimistic (can't have ���
Ω(n) edges incident to each of Ω(n) distinct "u" 
vertices if G is sparse).  Alt, more global analysis:	


Each edge is explored once ���
from each end-point, so total ���
runtime of inner loop is O(m).	


Total O(n+m), n = # nodes, m = # edges	


Exercise:  extend 
algorithm and 
analysis to non-
connected graphs	
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Properties of (Undirected) BFS(v)	


BFS(v) visits x if and only if there is a path in G from 
v to x.	

Edges into then-undiscovered vertices define a tree 
– the "breadth first spanning tree" of G	

Level i in this tree are exactly those vertices ���
u such that the shortest path (in G, not just the ���

tree) from the root v is of length i.	

All non-tree edges join vertices on the ���
same or adjacent levels	


not true 
of every 
spanning 
tree!	
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BFS Application: Shortest Paths	
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Tree (solid edges)  
gives shortest "
paths from  
start vertex"

BFS Application: Shortest Paths	
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Tree (solid edges)  
gives shortest "
paths from  
start vertex"

BFS Application: Shortest Paths	
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Tree (solid edges)  
gives shortest "
paths from  
start vertex"

BFS Application: Shortest Paths	
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Why fuss about trees?	


Trees are simpler than graphs	

Ditto for algorithms on trees vs algs on graphs	

So, this is often a good way to approach a graph 
problem: find a "nice" tree in the graph, i.e., one 
such that non-tree edges have some simplifying 
structure	

E.g., BFS finds a tree s.t. level-jumps are minimized	

DFS (below) finds a different tree, but it also has 
interesting structure…	
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Graph Search Application: 
Connected Components	


Want to answer questions of the form:	

given vertices u and v, is there a ���
path from u to v?	


Set up one-time data structure to answer such 
questions efficiently.	
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Q: Why not 
create 2-d 
array Path
[u,v]?"

Graph Search Application: 
Connected Components	


Want to answer questions of the form:	

given vertices u and v, is there a ���
path from u to v?	


Idea: create array A such that 	

A[u] = smallest numbered vertex that���
is connected to u.  Question reduces ���
to whether A[u]=A[v]?	
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Graph Search Application: 
Connected Components	


initial state: all v undiscovered���
for v = 1 to n do���
	
if state(v) != fully-explored then                                 
	
 	
BFS(v): setting A[u] ←v for each u found ���
	
 	
(and marking u discovered/fully-explored) ���
	
endif                                                                               

endfor	


Total cost: O(n+m)	

each edge is touched a constant number of times (twice)	

works also with DFS	


3.4  Testing Bipartiteness	
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Bipartite Graphs	


Def.  An undirected graph G = (V, E) is 	

bipartite (2-colorable) if the nodes can be���
colored red or blue such that no edge 
has both ends the same color.	


Applications.	

Stable marriage:  men = red, women = blue	

Scheduling:  machines = red, jobs = blue	


a bipartite graph	


"bi-partite" means 
"two parts."  An 
equivalent definition: 
G is bipartite if you 
can partition the 
node set into 2 parts 
(say, blue/red or left/
right) so that all 
edges join nodes in 
different parts/no 
edge has both ends 
in the same part. 
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Testing Bipartiteness	


Testing bipartiteness.   Given a graph G, is it bipartite?	

Many graph problems become:	


easier if the underlying graph is bipartite (matching)	

tractable if the underlying graph is bipartite (independent set)	


Before attempting to design an algorithm, we need to 
understand structure of bipartite graphs.	


v1	


v2	
 v3	


v6	
 v5	
 v4	


v7	


v2	


v4	


v5	


v7	


v1	


v3	


v6	


a bipartite graph G	
 another drawing of G	
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An Obstruction to Bipartiteness	


Lemma.  If a graph G is bipartite, it cannot contain an 
odd length cycle.	


Pf.  Impossible to 2-color the odd cycle, let alone G.	


bipartite���
(2-colorable)	


not bipartite���
(not 2-colorable)	


not bipartite���
(not 2-colorable)	


52	

Case (i)	


L1	
 L2	
 L3	


Case (ii)	


L1	
 L2	
 L3	


Bipartite Graphs	


Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.	


(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.	

(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).	
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Case (i)	


L1	
 L2	
 L3	


Bipartite Graphs	


Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.	


(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.	

(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).	


Pf.  (i)	

Suppose no edge joins two nodes in the same layer.	

By previous lemma, all edges join nodes on adjacent levels.	


	
 	
 	
 	
Bipartition:  ���
	
 	
 	
 	
    red  = nodes on odd levels, ���
	
 	
 	
 	
    blue = nodes on even levels.	
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z = lca(x, y)	


(x, y)	
 path from ���
y to z	


path from ���
z to x	


Bipartite Graphs	


Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds.	


(i)   No edge of G joins two nodes of the same layer, and 
G is bipartite.	

(ii)  An edge of G joins two nodes of the same layer, and G 
contains an odd-length cycle (and hence is not bipartite).	


Pf.  (ii)	

Suppose (x, y) is an edge & x, y in same level Lj.	

Let z = their lowest common ancestor in BFS tree.	

Let Li be level containing z.	

Consider cycle that takes edge from x to y, ���
then tree from y to z, then tree from z to x.	

Its length is  1  +   (j-i)  +  (j-i),  which is odd.	
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Obstruction to Bipartiteness	

Cor:  A graph G is bipartite iff it contains no odd 
length cycle.	


5-cycle C	


bipartite���
(2-colorable)	


not bipartite���
(not 2-colorable)	


NB: the proof is algorithmic–it 
finds a coloring or odd cycle. 

3.6  DAGs and Topological Ordering	
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Precedence Constraints	


Precedence constraints.  Edge (vi, vj) means task vi 
must occur before vj.	


Applications	


Course prerequisites:  course vi must be taken before vj	


Compilation: must compile module vi before vj	


Computing workflow:  output of job vi is input to job vj	


Manufacturing or assembly: sand it before you paint it…	


Spreadsheet evaluation order:  if A7 is "=A6+A5+A4", 
evaluate them first	


58	


Directed Acyclic Graphs	


Def.  A DAG is a directed acyclic graph, i.e., one that 
contains no directed cycles.	


Ex.  Precedence constraints:  edge (vi, vj) means vi must 
precede vj.	


Def.  A topological order of a directed graph G = (V, E) is an 
ordering of its nodes as v1, v2, …, vn so that for every edge 
(vi, vj) we have i < j.	


a DAG	

a topological ordering of that DAG–���
all edges left-to-right	


v2	
 v3	


v6	
 v5	
 v4	


v7	
 v1	


v1	
 v2	
 v3	
 v4	
 v5	
 v6	
 v7	


E.g., ∀edge (vi, vj), finish���
  vi  before starting  vj	
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Directed Acyclic Graphs	


Lemma.  If G has a topological order, then G is a DAG.	


Pf.  (by contradiction)	

Suppose that G has a topological order v1, …, vn ���
and that G also has a directed cycle C.	

Let vi be the lowest-indexed node in C, and let vj be the node just 
before vi; thus (vj, vi) is an edge.	

By our choice of i, we have i < j.	

On the other hand, since (vj, vi) is an edge and v1, …, vn is a topological 
order, we must have j < i, a contradiction.	


v1	
 vi	
 vj	
 vn	


the supposed topological order:  v1, …, vn	


the directed cycle C	


if all edges go L→R, 
you can't loop back 
to close a cycle 	
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Directed Acyclic Graphs	


Lemma.  	

    If G has a topological order, then G is a DAG.	


Q.  Does every DAG have a topological ordering?	


Q.  If so, how do we compute one?	
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Directed Acyclic Graphs	


Lemma.  If G is a DAG, then G has a node with no incoming edges.	


Pf.  (by contradiction)	

Suppose that G is a DAG and every node has at least one incoming 
edge.  Let's see what happens.	

Pick any node v, and begin following edges backward from v.  Since v 
has at least one incoming edge (u, v) we can walk backward to u.	

Then, since u has at least one incoming edge (x, u), we can walk 
backward to x.	

Repeat until we visit a node, say w, twice.	

Let C be the sequence of nodes encountered ���
between successive visits to w.  C is a cycle.	


w	
 x	
 u	
 v	


Why must 
this happen?	


C	
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Directed Acyclic Graphs	


Lemma.  If G is a DAG, then G has a topological ordering.	


Pf.  (by induction on n)	

Base case:  true if n = 1.	

Given DAG on n > 1 nodes, find a node v with no incoming edges.	

G - { v } is a DAG, since deleting v cannot create cycles.	

By inductive hypothesis, G - { v } has a topological ordering.	

Place v first in topological ordering; then append nodes of G - { v }	

in topological order. This is valid since v has no incoming edges.   ▪	


DAG	


v	
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v1	


Topological Ordering Algorithm:  Example	


Topological order:  	


v2	
 v3	


v6	
 v5	
 v4	


v7	
 v1	
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v2	


Topological Ordering Algorithm:  Example	


Topological order:  v1	


v2	
 v3	


v6	
 v5	
 v4	


v7	
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v3	


Topological Ordering Algorithm:  Example	


Topological order:  v1, v2	


v3	


v6	
 v5	
 v4	


v7	
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v4	


Topological Ordering Algorithm:  Example	


Topological order:  v1, v2, v3	


v6	
 v5	
 v4	


v7	
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v5	


Topological Ordering Algorithm:  Example	


Topological order:  v1, v2, v3, v4	


v6	
 v5	


v7	
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v6	


Topological Ordering Algorithm:  Example	


Topological order:  v1, v2, v3, v4, v5	


v6	


v7	
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v7	


Topological Ordering Algorithm:  Example	


Topological order:  v1, v2, v3, v4, v5, v6	


v7	
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Topological order:  v1, v2, v3, v4, v5, v6, v7.	


v2	
 v3	


v6	
 v5	
 v4	


v7	
 v1	


v1	
 v2	
 v3	
 v4	
 v5	
 v6	
 v7	


Topological Ordering Algorithm:  Example	
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Topological Sorting Algorithm	

Maintain the following:	


count[w] = (remaining) number of incoming edges to node w	

S = set of (remaining) nodes with no incoming edges	


Initialization:  	

count[w] = 0 for all w	

count[w]++ for all edges (v,w) 	
O(m + n)	

S = S ∪ {w} for all w with count[w]==0	


Main loop: 	

while S not empty	


remove some v from S	

make v next in topo order 	
O(1) per node	

for all edges from v to some w 	
O(1) per edge	

decrement count[w]	

add w to S if count[w] hits 0	


Correctness: clear, I hope	

Time: O(m + n)  (assuming edge-list representation of graph)	
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Depth-First Search	


Follow the first path you find as far as you can go	


Back up to last unexplored edge when you reach a 
dead end, then go as far you can 	


Naturally implemented using recursive calls or a 
stack	




13 

73	


Non-tree edges	


All non-tree edges join a vertex and one of 
its descendents/ancestors in the DFS tree	


No cross edges!	
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DFS(v) – Recursive version	

Global Initialization: 	


for all nodes v, v.dfs# = -1 	
// mark v "undiscovered" ���
dfscounter = 0	


DFS(v) 	

v.dfs# = dfscounter++ 	
// v "discovered", number it	

for each edge (v,x)	

	
if (x.dfs# = -1) 	
// tree edge (x previously  undiscovered)	


	
 	
DFS(x)	

	
else … 	
// code for back-, fwd-, parent,	

	
 	
 	
// edges, if needed	

	
 	
 	
// mark v "completed," if needed	
 75	


Why fuss about trees (again)?	


BFS tree ≠ DFS tree, but, as with BFS, DFS 
has found a tree in the graph s.t. non-tree 
edges are "simple" – only descendant/
ancestor	
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DFS(v) - explicit stack	


Global Initialization: mark all vertices "undiscovered"	

DFS(v) 	


mark  v "discovered"	

push (v,1) onto empty stack 	

while stack not empty	


(u,i) = pop(stack)	

for ( ; i ≤ # of neighbors of u; i++)	


	
x = ith edge on u's edge list	

	
if (x is undiscovered) 	

mark x "discovered"	

push (u,i+1) 	
// save info to resume with u's next edge,	

u = x 	
 	
// after exploring from x,	

i = 1 	
 	
// (starting with its first edge)	


mark u completed	


Exercise: modify to compute 
vertex numbering"

Idea: stack of unfinished 
vertices, plus pointers into 
their edge lists to say what 
work remains to finish."
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DFS(A)	

A,1 

B J 

I 

H 

C 

G 

F D 

E 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack"
"(Edge list):"

A"(B,J)"
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DFS(A)	

A,1 

B,2 J 

I 

H 

C 

G 

F D 

E 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
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DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G 

F D 

E 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A (B,J)"
B (A,C,J)"
C"(B,D,G,H)"

80	


DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G 

F D,4 

E 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
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DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G 

F D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"

82	


DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"
F"(D,E,G)"
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DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"
F"(D,E,G)"
G"(C,F)"

84	


DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"
F"(D,E,G)"
G"(C,F)"
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DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"
F"(D,E,G)"

86	


DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
E"(D,F)"

87	


DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
D"(C,E,F)"
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DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
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DFS(A)	

A,1 

B,2 J 

I 

H 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"

90	


DFS(A)	

A,1 

B,2 J 

I 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
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DFS(A)	

A,1 

B,2 J 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
I "(H)"

92	


DFS(A)	

A,1 

B,2 J 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
I "(H)"

93	


DFS(A)	

A,1 

B,2 J 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"

94	


DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
K"(J,L)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
K"(J,L)"
L"(J,K,M)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
K"(J,L)"
L"(J,K,M)"
M"(L) "
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
K"(J,L)"
L"(J,K,M)"

99	


DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
K"(J,L)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
J "(A,B,H,K,L)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
H"(C,I,J)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
C"(B,D,G,H)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
B"(A,C,J)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

A"(B,J)"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Suppose edge lists"
at each vertex  
are sorted 
alphabetically"

Color code:!
undiscovered"
discovered!
fully-explored!

Call Stack:"
"(Edge list)"

"TA-DA!!"
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DFS(A)	

A,1 

B,2 J,10 

I,9 

H,8 

C,3 

G,7 

F,6 D,4 

E,5 

K,11 L,12 

M,13 

Edge code:!
Tree edge!
Back edge"

110	


DFS(A)	
 A,1 

B,2 
J,10 

I,9 

H,8 

C,3 

G,7 

F,6 

D,4 

E,5 

K,11 L,12 

M,13 

Edge code:!
Tree edge!
Back edge"
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DFS(A)	
 A,1 

B,2 

J,10 

I,9 

H,8 

C,3 

G,7 

F,6 

D,4 

E,5 

K,11 
L,12 

M,13 

Edge code:!
Tree edge!
Back edge"
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DFS(A)	

A,1 

B,2 

J,10 

I,9 

H,8 

C,3 

G,7 

F,6 

D,4 

E,5 

K,11 
L,12 

M,13 

Edge code:!
Tree edge!
Back edge"

113	


DFS(A)	

A,1 

B,2 

J,10 

I,9 

H,8 

C,3 

G,7 

F,6 

D,4 

E,5 

K,11 

L,12 

M,13 

Edge code:!
Tree edge!
Back edge"

114	


DFS(A)	

A,1 

B,2 

J,10 

I,9 

H,8 

C,3 

G,7 F,6 

D,4 

E,5 K,11 

L,12 

M,13 

Edge code:!
Tree edge!
Back edge"
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DFS(A)	

A,1 

B,2 

J,10 

I,9 

H,8 

C,3 

G,7 

F,6 

D,4 

E,5 

K,11 
L,12 

M,13 

Edge code:!
Tree edge!
Back edge!
No Cross Edges!"
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Properties of (Undirected) DFS(v)	


Like BFS(v):	

DFS(v) visits x if and only if there is a path in G from v to 
x (through previously unvisited vertices)	


Edges into then-undiscovered vertices define a tree – 
the "depth first spanning tree" of G	


Unlike the BFS tree: 	

the DF spanning tree isn't minimum depth	

its levels don't reflect min distance from the root	

non-tree edges never join vertices on the same or 
adjacent levels	


BUT…	

117	


Non-tree edges	


All non-tree edges join a vertex and one of 
its descendents/ancestors in the DFS tree	


No cross edges!	


118	


DFS(v) – Recursive version	

Global Initialization: 	


for all nodes v, v.dfs# = -1 	
// mark v "undiscovered" ���
dfscounter = 0	


DFS(v) 	

v.dfs# = dfscounter++ 	
// v "discovered", number it	

for each edge (v,x)	

	
if (x.dfs# = -1) 	
// tree edge (x previously  undiscovered)	


	
 	
DFS(x)	

	
else … 	
// code for back-, fwd-, parent,	

	
 	
 	
// edges, if needed	

	
 	
 	
// mark v "completed," if needed	
 119	


Why fuss about trees (again)?	


As with BFS, DFS has found a tree in the 
graph s.t. non-tree edges are "simple"--only 
descendant/ancestor	


120	


A simple problem on trees	


Given: tree T, a value L(v) defined for every 
vertex v in T���
Goal: find M(v), the min value of L(v) 
anywhere in the subtree rooted at v 
(including v itself). ���
How?	
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! 

M(v) =
L(v) if v is a leaf
min(L(v), minw a child of v M(w)) otherwise
" 
# 
$ 

% 
& 
' 

A simple problem on trees	


Given: tree T, a value L(v) defined for every 
vertex v in T���
Goal: find M(v), the min value of L(v) 
anywhere in the subtree rooted at v 
(including v itself). ���
How?  Depth first search, using:	


122	


Application: Articulation Points	


A node in an undirected graph is an 
articulation point iff removing it 
disconnects the graph	


articulation points represent vulnerabilities in 
a network – single points whose failure would 
split the network into 2 or more 
disconnected components	


123	

Ram Samudrala/Jason McDermott Articulation point proteins 

Identifying key proteins on the anthrax predicted network 
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Articulation Points	

1 

2 10 

9 

8 

3 

7 

6 
4 

5 

11 
12 

13 

articulation point  
iff its removal  

disconnects 
the graph"
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Articulation Points	

1 

2 10 

9 

8 

3 

7 

6 
4 

5 

11 
12 

13 
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Brainstorming	


draw a graph, ~ 10 nodes, A-J	

redraw as via DFS, starting at "E"	

add dsf#s & tree/back edges (solid/dashed) 	

find cycles	

give alg to find cycles via dfs; does G have any?	


find articulation points	

what do cycles have to do with articulation points?	

alg to find articulation points via DFS???	




22 

127	


Simple Case: Artic. Pts in a tree 	


Leaves – never articulation points	

Internal nodes – always articulation points	

Root – articulation point if and only if two or 
more children	


Non-tree: extra edges remove some 
articulation points (which ones?)	


128	


Articulation Points from DFS	


Root node is an articulation point ���
iff it has more than one child	

Leaf is never an articulation point	


∃ some child y of u s.t. 
no non-tree edge goes 
above u from y or below"

non-leaf, non-root"
node u is an "
articulation point"⇔

u"
x"

If removal of u does NOT 
separate x, there must be an 
exit from x's subtree.  How?  
Via back edge.	


y"

129	


Articulation Points: ���
the "LOW" function	


Definition:  LOW(v) is  the lowest dfs# of any ���
vertex that is either in the dfs subtree rooted at v 
(including v itself) or  connected to a vertex in that 
subtree by a back edge.	


LOW(v) =���
    min ( {dfs#(v)} ∪ {LOW(w) | w a child of v } ∪ ���
 { dfs#(x) | {v,x} is a back edge from v } )	


v articulation point iff…	


trivial"

critic
al"
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Articulation Points	

A 

B 

H G 

E 

C 

K 

I 

D 

F 

J 
L 

M 

Vertex! DFS # !Low!
A !!
B !!
C !!
D !!
E !!
F !!
G !!
H !!
I !!
J !!
K !!
L !!
M !!
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Articulation Points	

A 

B 

H G 

E 

C 

K 

I 

D 

F 

J 
L 

M 

1 

13 

12 

7 

11 
6 

10 
9 5 

8 4 

3 

2 Vertex! DFS # !Low!
A !1 !1!
B !2 !1!
C !3 !1!
D !4 !3!
E !8 !1!
F !5 !3!
G !9 !9!
H !10 !1!
I !6 !3!
J !11 !10!
K !7 !3!
L !12 !10!
M !13 !13!

132	


DFS(v) for���
Finding Articulation Points	


Global initialization: v.dfs# = -1 for all v.	

DFS(v) 	

v.dfs# = dfscounter++	

v.low = v.dfs# 	
 	
// initialization	

for each edge {v,x}	

	
if (x.dfs# == -1) 	
// x is undiscovered	

	
 	
DFS(x)	

	
 	
v.low = min(v.low, x.low)	

	
 	
if (x.low >= v.dfs#)	

	
 	
 	
print "v is art. pt., separating x"	

	
else if (x is not v's parent)	

	
 	
v.low = min(v.low, x.dfs#)	


Equiv: "if( {v,x} 
is a back edge)" 
Why?"

Except for root.  W
hy?"
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Summary	


Graphs –abstract relationships among pairs of objects	


Terminology – node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected	


Representation – edge list, adjacency matrix	


Nodes vs Edges – m = O(n2), often less	

BFS – Layers, queue, shortest paths, all edges go to same or 

adjacent layer	


DFS – recursion/stack; all edges ancestor/descendant	

Algorithms – connected components, bipartiteness, 

topological sort,  articulation points 	

133	
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3' UTR	


135	


Articulation Points	

A 

B 

H 

F C 

D E 

Vertex! DFS # !Low!
A ! !!
B ! !!
C ! !!
D ! !!
E ! !!
F ! !!
G !!
H ! ! !

AP's:!
BCC's: !
  1)!
  2)!
  3)!
  4)                           !G 
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Articulation Points	

A 

B 

H 

F C 

D E 

1 

6 

8 5 7 4 

3 

2 

Vertex! DFS # !Low!
A !1 !1!
B !2 !1!
C !3 !3!
D !4 !3!
E !5 !3!
F !6 !1!
G !7 !6!
H !8 !6!

AP's: C, B, F!
BCC's: !
  1) C--D, D--E, E--C!
  2) B--C!
  3) A--B, B--F, F--A!
  4) F--G, G--H, H--F!G 
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BFS(v)	

1 

2 3 

10 

5 

4 

9 

12 
8 

13 

6 
7 

11 
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DFS(v)	

1 

2 10 

9 

8 

3 

7 

6 4 

5 

11 12 

13 



24 
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Articulation Points from DFS	


Every interior vertex of a tree is an articulation 
point	


Non-tree edges eliminate articulation points	


Leaves are never articulation points	

Root node is an articulation point iff it has more 
than one child	


no non-tree edge goes "
above u from a sub-tree 
below some child of u"

non-leaf, non-root"
node u is an "
articulation point"

⇔
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DFS Application: ���
Articulation Points	
1 

2 

9 

8 

3 

7 
6 

4 

5 

10 

11 
12 

13 
leaves are not articulation points"

articulation points & reasons"
3 sub-tree at 4"
8 sub-tree at 9"

10 sub-tree at 11"
12 sub-tree at 13"

non-tree edges matched "
with vertices they eliminate"

root has one child"
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Articulation Points: ���
Some Subtleties	
1 

2 

9 

8 

3 

7 
6 

4 

5 

10 

11 
12 

13 

non-tree edges matched "
with vertices they eliminate."

4, 5, 6 should  be 
eliminated, "
yet are unmatched."

They need to inherit 
information from child 7"
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DFS Vertex Numbering	


If u is an ancestor of v in the DFS tree, then 
dfs#(u) < dfs#(v).	



