CSE 421: Intro Algorithms

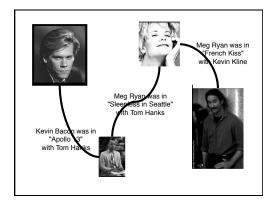
Fall 2011 Graphs and Graph Algorithms Slides by Larry Ruzzo

Goals

Graphs: defns, examples, utility, terminology Representation: input, internal Traversal: Breadth- & Depth-first search Three Algorithms: Connected components Bipartiteness Topological sort

2

5



Objects & Relationships

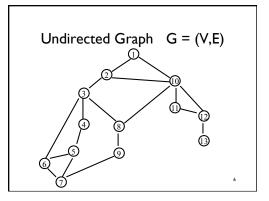
The Kevin Bacon Game: Obj: Actors Rel: Two are related if they've been in a movie together Exam Scheduling: Obj: Classes Rel: Two are related if they have students in common Traveling Salesperson Problem: Obj: Cities Rel: Two are related if can travel *directly* between them

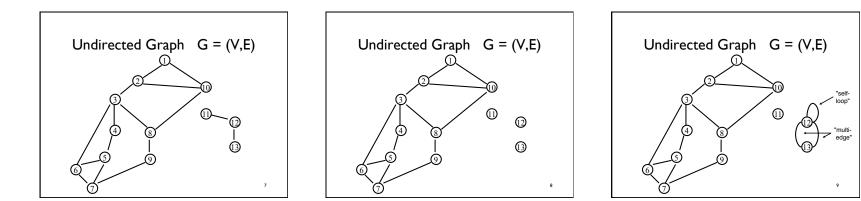
Graphs

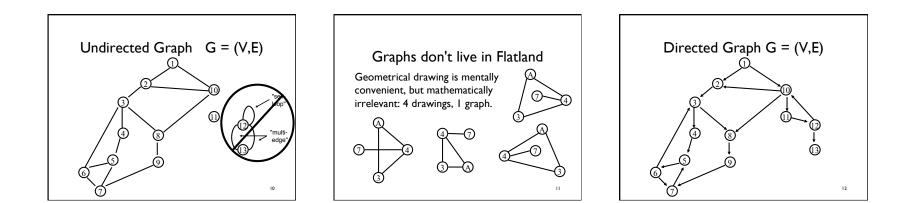
An extremely important formalism for representing (binary) relationships Objects: "vertices," aka "nodes"

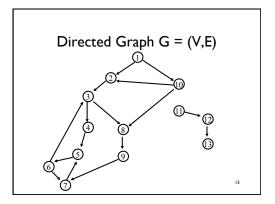
Relationships between pairs: "edges," aka "arcs"

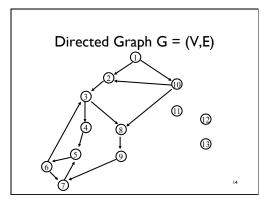
Formally, a graph G = (V, E) is a pair of sets, V the vertices and E the edges

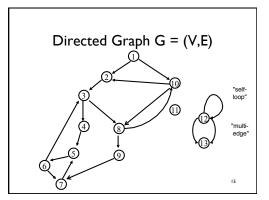


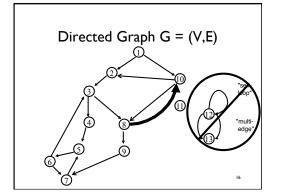


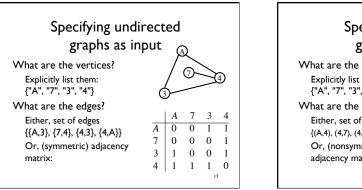


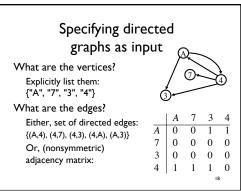


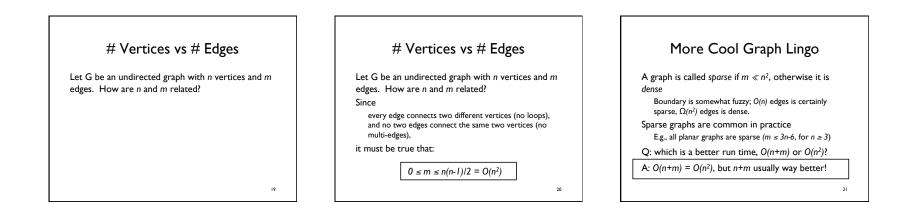


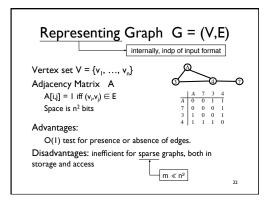




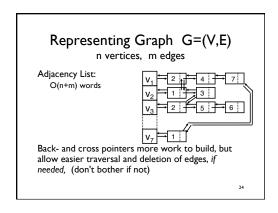








Representing Graph G=(V,E)		
Adjacency List: O(n+m) words Advantages: Compact for sparse graphs Easily see all edges Disadvantages More complex data stru- no O(1) edge test	$ \begin{array}{c} V_1 \rightarrow 2 \rightarrow 4 \rightarrow 7 \\ V_2 \rightarrow 1 \rightarrow 3 \\ V_3 \rightarrow 2 \rightarrow 5 \rightarrow 6 \\ V_n \rightarrow 7 \\ v_n \rightarrow 7 \\ vcture $	
	23	



Graph Traversal

Learn the basic structure of a graph "Walk," <u>via edges</u>, from a fixed starting vertex s to all vertices reachable from s

Being orderly helps. Two common ways: Breadth-First Search: order the nodes in successive layers based on distance from s Depth-First Search: more natural approach for exploring a maze; many efficient algs build on it.²⁵

Breadth-First Search

Completely explore the vertices in order of their distance from s

26

Naturally implemented using a queue

Graph Traversal: Implementation

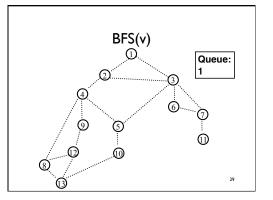
Learn the basic structure of a graph "Walk," <u>via edges</u>, from a fixed starting vertex s to all vertices reachable from s

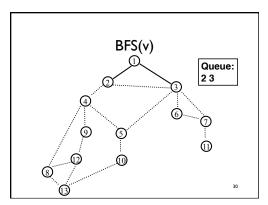
27

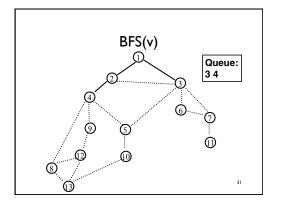
Three states of vertices undiscovered discovered fully-explored

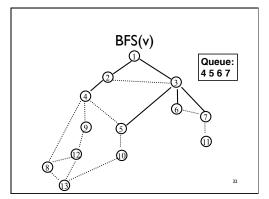
BFS(s) Implementation

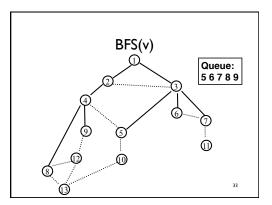
Global initialization: mark all vertices "undiscovered" BFS(s) mark s "discovered" queue = { s } while queue not empty u = remove_first(queue) for each edge {u,x} if (x is undiscovered) mark x discovered append x on queue mark u fully explored Exercise: modify code to number vertices & compute level numbers

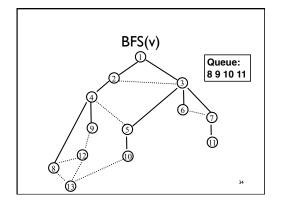


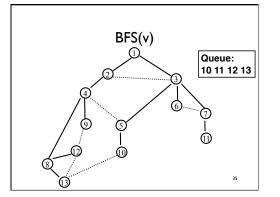


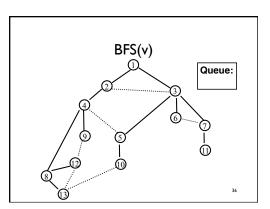


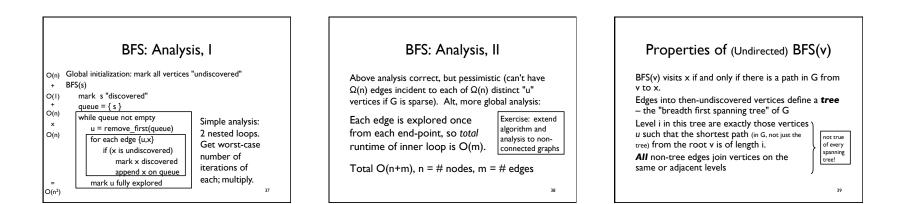


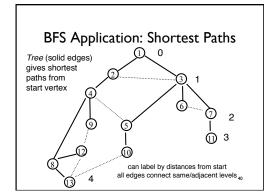


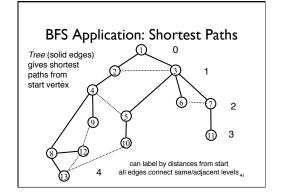


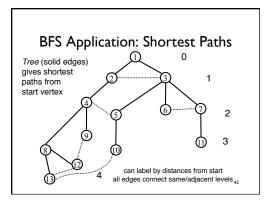


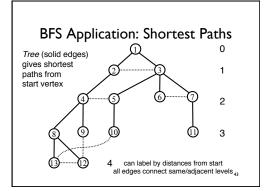












Why fuss about trees?

Trees are simpler than graphs Ditto for algorithms on trees vs algs on graphs So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure

E.g., BFS finds a tree s.t. level-jumps are minimized DFS (below) finds a different tree, but it also has interesting structure...

44

47

Graph Search Application: Connected Components

Want to answer questions of the form: given vertices u and v, is there a path from u to v?

Set up one-time data structure to answer such questions efficiently.

45

Graph Search Application: Connected Components Want to answer questions of the form: given vertices u and v, is there a path from u to v?

46

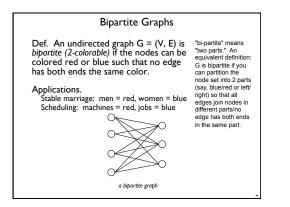
Graph Search Application: Connected Components

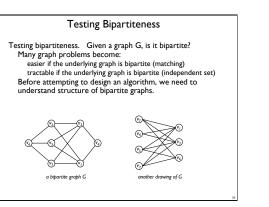
initial state: all v undiscovered for v = 1 to n do if state(v) != fully-explored then BFS(v): setting A[u] ←v for each u found (and marking u discovered/fully-explored) endif endfor

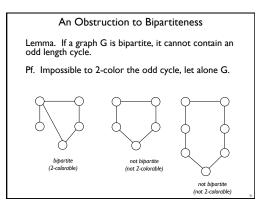
Total cost: O(n+m)

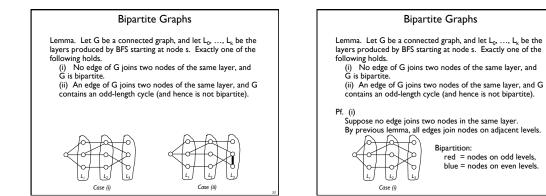
each edge is touched a constant number of times (twice) works also with DFS

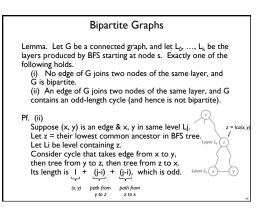
3.4 Testing Bipartiteness

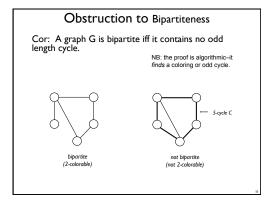












3.6 DAGs and Topological Ordering

Precedence Constraints

Precedence constraints. Edge $(v_i,\,v_j)$ means task v_i must occur before $v_i,$

Applications

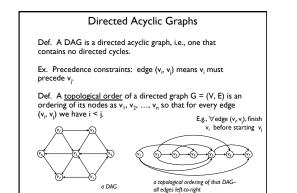
Course prerequisites: course v_i must be taken before v_i

Compilation: must compile module v_i before v_i

Computing workflow: output of job v_i is input to job v_i

Manufacturing or assembly: sand it before you paint it...

Spreadsheet evaluation order: if A7 is "=A6+A5+A4", evaluate them first



Directed Acyclic Graphs

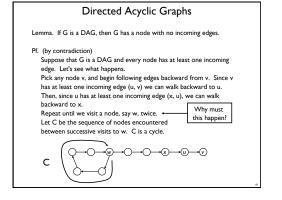
$$(5) \qquad (5) \qquad (5)$$

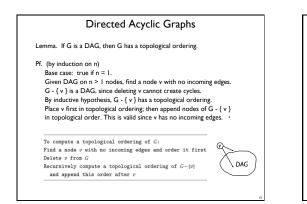
Directed Acyclic Graphs

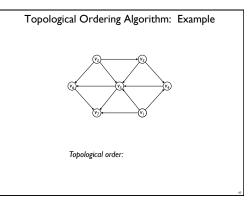
Lemma.

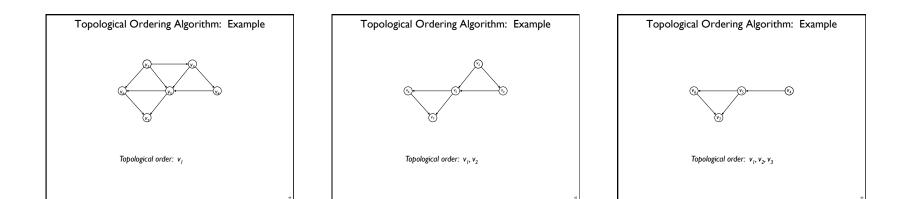
If G has a topological order, then G is a DAG.

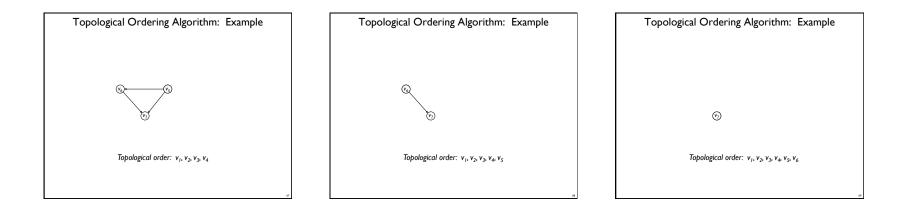
- Q. Does every DAG have a topological ordering?
- Q. If so, how do we compute one?

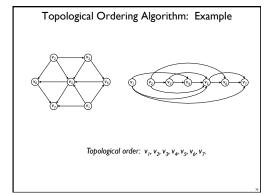












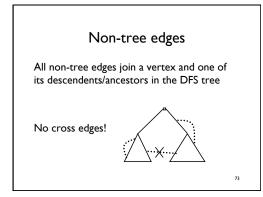
Maintain the following:	
count[w] = (remaining) number of incom	ing edges to node w
S = set of (remaining) nodes with no inco	oming edges
Initialization: count[w] = 0 for all w	J
count[w] = 0 for all w count[w]++ for all edges (v,w) $S = S \cup \{w\}$ for all w with $count[w]==0$	> O(m + n)
$S = S \cup \{w\}$ for all w with count[w]==0	
Main loop:)
while S not empty	`
remove some v from S	
make v next in topo order	O(1) per node
for all edges from v to some w	O(I) per edge
decrement count[w]	
add w to S if count[w] hits 0	J
for all edges from v to some w decrement count[w]	O(I) per node O(I) per edge
Correctness: clear, I hope	,

Depth-First Search

Follow the first path you find as far as you can go Back up to last unexplored edge when you reach a dead end, then go as far you can

Naturally implemented using recursive calls or a stack

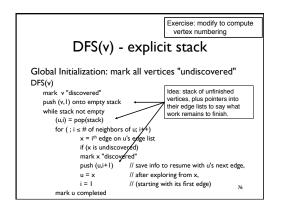
72

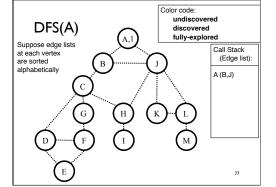


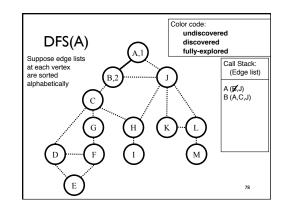
DFS(v) – Recursive version		
Global Initialization: for all nodes v, v.dfs# = -1 dfscounter = 0	// mark v "undiscovered"	
DFS(v)		
v.dfs# = dfscounter++ for each edge (v,x)	// v "discovered", number it	
if $(x.dfs# = -1)$ DFS(x)	// tree edge (x previously undiscovered)	
else	// code for back-, fwd-, parent,	
	// edges, if needed	
	// mark v "completed," if needed4	

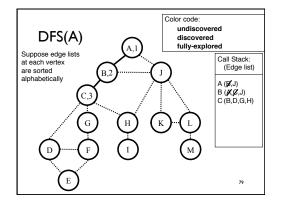
Why fuss about trees (again)?

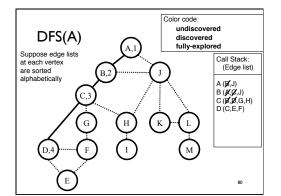
BFS tree \neq DFS tree, but, as with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple" – only descendant/ ancestor

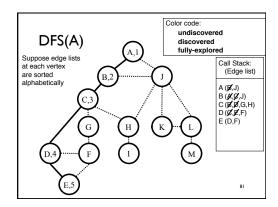


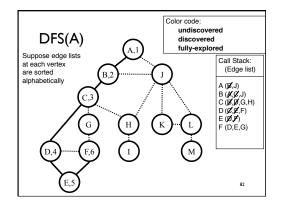


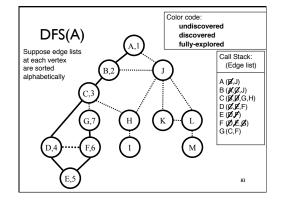


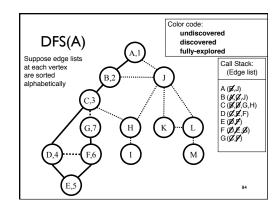


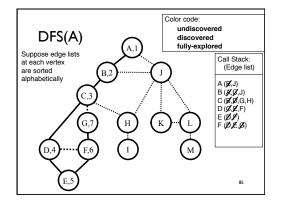


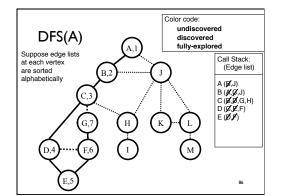




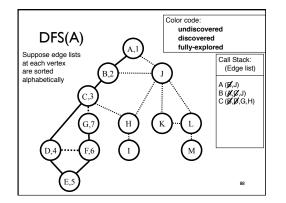


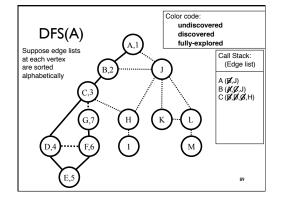


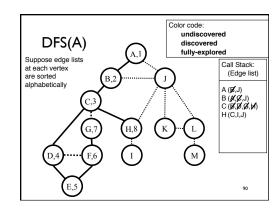


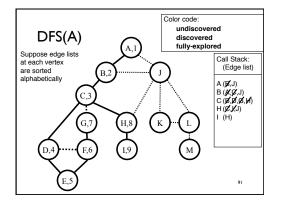


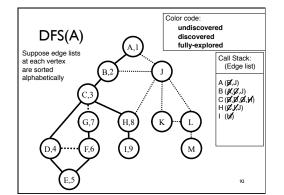


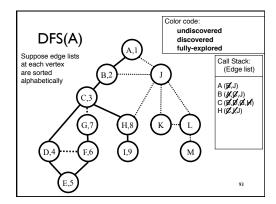


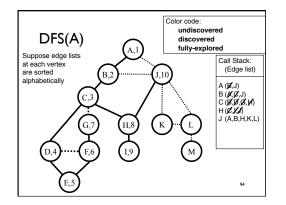


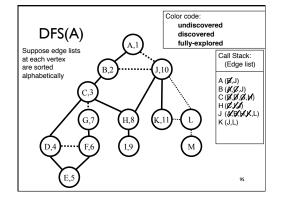


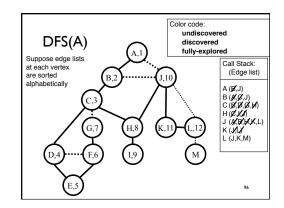


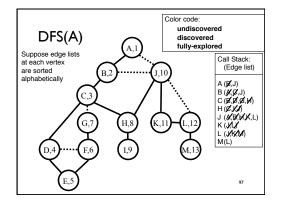


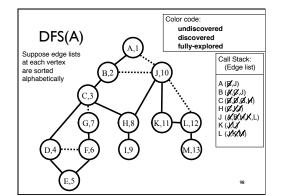


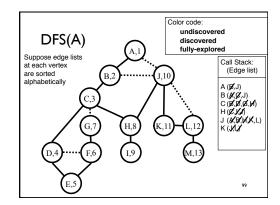


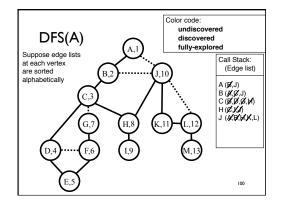


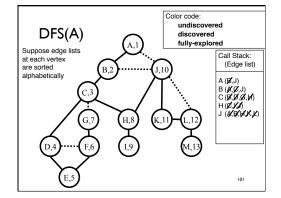


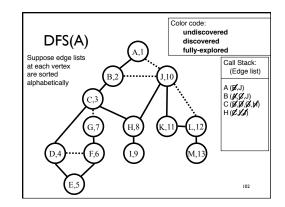


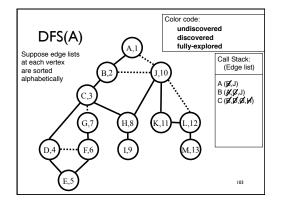


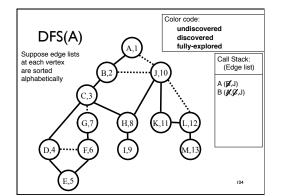


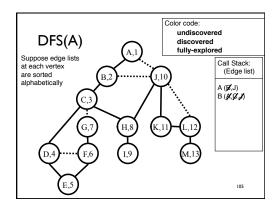


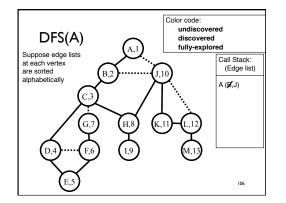


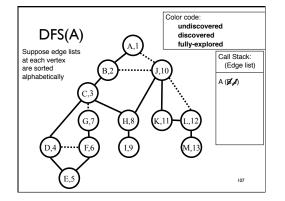


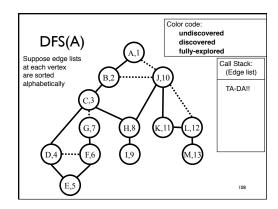


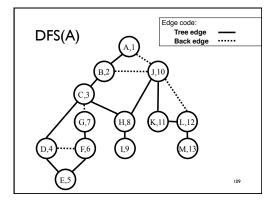


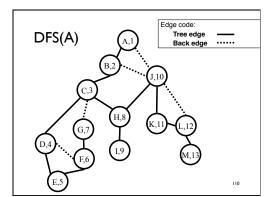


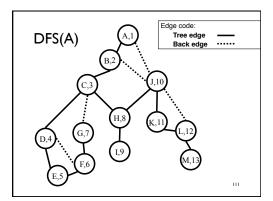


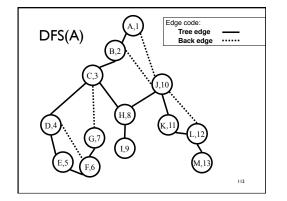


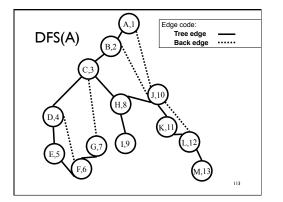


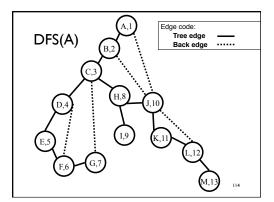


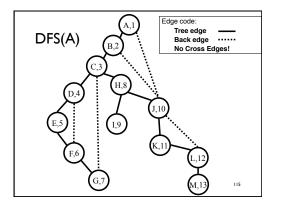






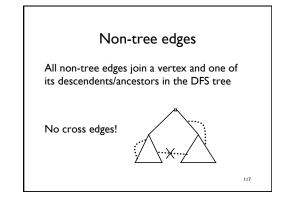






Like BFS(v):

DFS(v) visits x if and only if there is a path in G from v to x (through previously unvisited vertices) Edges into then-undiscovered vertices define a **tree** – the "depth first spanning tree" of G Unlike the BFS tree: the DF spanning tree isn't minimum depth its levels don't reflect min distance from the root non-tree edges never join vertices on the same or adjacent levels BUT...



DFS(v) – Recursive version

Global Initialization: for all nodes v, v.dfs# = -1 // mark v "undiscovered" dfscounter = 0

DFS(v)

v.dfs# = dfscounter++ // v "discovere for each edge (v,x) if (x.dfs# = -1) // tree edge (x DFS(x) else ... // code for bac // edges, if nee

// v "discovered", number it
// tree edge (x previously undiscovered)
// code for back-, fwd-, parent,
// edges, if needed
// mark v "completed," if needed_

Why fuss about trees (again)?

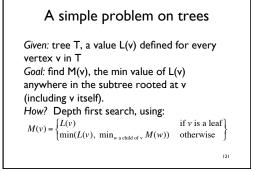
As with BFS, DFS has found a tree in the graph s.t. non-tree edges are "simple"--only descendant/ancestor

A simple problem on trees

Given: tree T, a value L(v) defined for every vertex v in T Goal: find M(v), the min value of L(v) anywhere in the subtree rooted at v (including v itself). How?

119

120



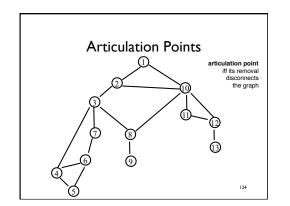
Application: Articulation Points

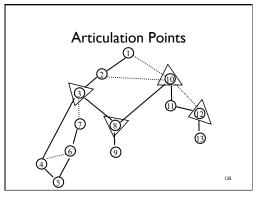
A node in an undirected graph is an **articulation point** iff removing it disconnects the graph

articulation points represent vulnerabilities in a network – single points whose failure would split the network into 2 or more disconnected components

Articulation point pro

122





Brainstorming

Identifying key proteins on the anthrax predicted network

Ram Samudrala/Jason McDermott

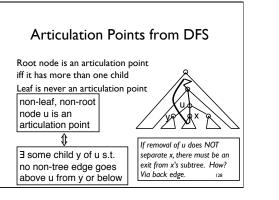
draw a graph, ~ 10 nodes, A-J redraw as via DFS, starting at "E" add dsf#s & tree/back edges (solid/dashed) find cycles give alg to find cycles via dfs; does G have any?

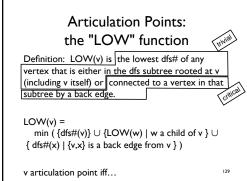
find articulation points what do cycles have to do with articulation points? alg to find articulation points via DFS???

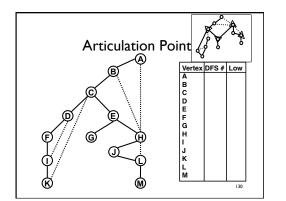
Internal nodes – always articulation points Root – articulation point if and only if two or more children

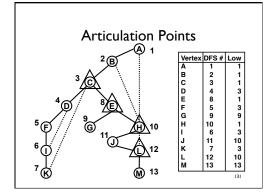
127

Non-tree: extra edges remove some articulation points (which ones?)



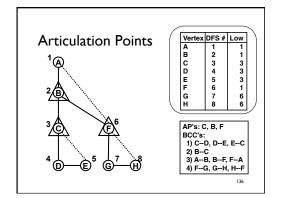


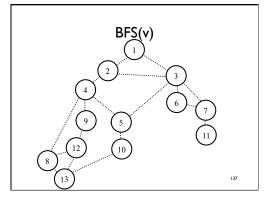


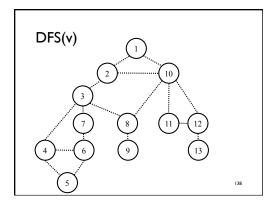


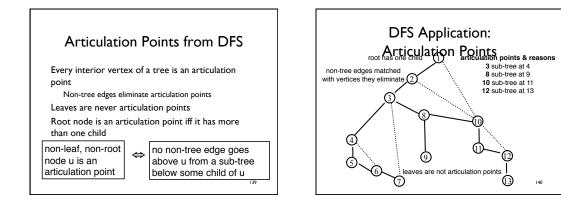
DFS(v) for Finding Articulation Points				
Global initialization: v.dfs# = -1 for all v. DFS(v) v.dfs# = dfscounter++ v.low = v.dfs# // initialization for each edge {v.x} if (x.dfs# == -1) // x is undiscovered DFS(x) v.low = min(v.low, x.low) if (x.low >= v.dfs#)	Except for root. Why?			
print "vi sart. pt., separating x" else if (x is not v's parent) v.low = min(v.low, x.dfs#) Why?				



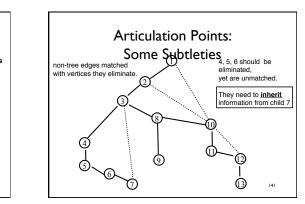








142



13

140

DFS Vertex Numbering

If u is an ancestor of v in the DFS tree, then dfs#(u) < dfs#(v).