Chapter 5

Divide and Conquer

“ JON KLEINBERG - EVA TARDOS

XY Slides by Kevin Wayne.
Addison Copyright © 2005 Pearson-Addison Wesley.
R All rights reserved.

Divide-and-Conquer

Divide-and-conquer.

« Break up problem into several parts.

« Solve each part recursively.

« Combine solutions to sub-problems into overall solution.

Most common usage.
« Break up problem of size n into two equal parts of size zh.
= Solve two parts recursively.
= Combine two solutions into overall solution in linear time.

5.1 Mergesort

Copyright 2000, Kevin Wayne

Consequence.
. Brute force: n2
« Divide-and-conquer: n log n. Divide et impera.
Veni, vidi, vici.
- Julius Caesar
Mergesort
Mergesort.

« Divide array into two halves.
« Recursively sort each half.
= Merge two halves to make sorted whole.

Jon von Neumann (1945)

[alefelolrlz]z]n]u]s]

[alafefolr] [s[z[afu[s] [dvie [p)]
leleloln] [alzluls]z] [or [cwa)]
‘A‘G‘H‘I‘L‘M‘O‘R‘S‘T‘ ‘mergeHD(n)‘

10/12/11

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? IE|
« Linear number of comparisons.
« Use temporary array.

[alelzlol=] [a]z[u][s][x]

[alelaf=[[[I [[]

Challenge for the bored. In-place merge. [Kronrud, 1969]
1

using only a constant amount of extra storage

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

0 if n=1
T = { T([n/2]) + T(|n/2]) + - otherwise
solve left half solve right half ~ Mereing

Solution. T(n) = O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.

Proof by Recursion Tree

0 if n=1
T(n) = 2T(n/2) + n otherwise

—_— -
sorting both halves merging

T(n/2) T(n/2) 2(n/2)

[Tv4) | [Tv4) | [T(v4) | [Tov4) | 4(n/4)

Egz"

T(n/ 2% | 2k(n / 2¥)

\

[T@][T@] [T@][T@ [T |[Te] [T@][T@] n/2(2)

nlog,n

Copyright 2000, Kevin Wayne

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = nlog, n.
t

assumes n is a power of 2

0 if n=1
T(n) = 2T(n/2) + n otherwise

— —
sorting both halves merging

Pf. Forn>1: T _ 2T(/2)
n n

T(n/2)

n/2

T(n/4)

= + 141
nl4

T(n/n)
= + 1+t
nin —

logan

= logyn

10/12/11

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.
t

assumes n is a power of 2

0 if n=1
T(n) = 2T(n/2) + n otherwise

——— —
sorting both halves merging

Pf. (by induction on n)

« Base case: n=1.

« Inductive hypothesis: T(n)= nlog, n.
« Goal: show that T(2n) = 2n log, (2n).

T(2n) = 2T(n) + 2n
= 2nlogyn + 2n
= 2n(log,2n)-1) + 2n
= 2nlog,(2n)

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) <n[lgn].
t

0 if n=1 logzn
To) = | T([n/2]) + T(|n/2]) + n, otherwise

U, R, -
solve lefthalf solve right half ~ ™Merging

Pf. (by induction on n)

« Basecase: n=1

« Defineny=|n/2|, ny=[n/2].

« Induction step: assume true for 1,2, .., n-1.

T(n) s T@)+ T(ny) + n n, = [n/2]
< n,[lgnl] + ny[lgny] + n - I‘z[ngn] /2'|
s nflgn] + nyflgn]+ n o
= n[lgn]+ n =
= lgn, = [lgn] -1

< n([lgn]-1) + n
= n[lgn]

5.3 Counting Inversions

Counting Inversions

Music site tries o match your song preferences with others.
« You rank n songs.
« Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
« Myrank: 1,2, .., n.

« Your rank: ay, a, ..., Q.

« Songs iand j inverted if i< j, but q; > a;.

Songs
A B C
Me | 1 | 2| 3] 4]s Loversions

3-2,4-2

You 1 3 4 2 5

Brute force: check all ©(n?) pairs i and j.

Copyright 2000, Kevin Wayne

10/12/11

10/12/11

Counting Inversions: Divide-and-Conquer

Counting Inversions: Divide-and-Conquer
Divide-and-conquer.

Divide-and-conquer.

« Divide: separate list into two pieces.

[1]5]a]s8]w][2]e]o]12[u]3]7]

[1]5]4a]8]w[2]e]o]r2[ufs]7] Divide: O(1).

[1]5]4]8]w][2][e]o]r2[ufs]7]

Counting Inversions: Divide-and-Conquer

Counting Inversions: Divide-and-Conquer
Divide-and-conquer.

« Divide: separate list into two pieces.

Divide-and-conquer.
« Conguer: recursively count inversions in each half.

« Divide: separate list into two pieces.

« Conguer: recursively count inversions in each half.
» Combine: count inversions where a; and g are in different halves,
and return sum of three quantities.

[1]5[4]8]w][2]6]o]rz[u]s]7] Dvie oW [1]s[4]8]w][2]6]9]12]ufs]|7] Dvde oW
1/5|4(8|10|2 6|9 |12|11|3|7 Conquer: 2T(n/ 2) 1154|8102 6|9 (12|/11|3]|7 Conquer: 2T(n/ 2)
[1]s]4]l8lw]z][e]o]rz[u]s]7] [1]s]4lslwlz][6]o]z[u]s]7]
5 blue-blue inversions 8 green-green inversions 5 blue-blue inversions 8 green-green inversions
5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11,11-3, 11-7

9 blue-green inversions Combine: 277
5-3,4-3, 8-6, 8-3, 8-7,10-6, 10-9, 10-3, 10-7

Total=5+8+9=22.

Copyright 2000, Kevin Wayne

Counting Inversions: Combine

Combine: count blue-green inversions
= Assume each half is sorted.
« Count inversions where g; and

q; are in different halves. E'
« Merge two sorted halves into sorted whole.

‘to maintain sorted invariant

‘3‘7‘10‘14‘18‘19‘ ‘2‘11‘16‘17‘23‘25‘

6 3 2 2 0 o0
13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)
‘2‘3‘7‘10‘11‘14‘16‘17‘18‘19‘23‘25‘ Merge: O(n)

T(n) = T(|n/2])+T([n/2])+Om) = T(n)=O(nlogn)

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count (L) {

if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(rp, A) < Sort-and-Count(a)

(ry, B) <« Sort-and-Count (B)

(ry, L) < Merge-and-Count (A, B)

return r = r, + r; + r and the sorted list L
}

5.4 Closest Pair of Points

Copyright 2000, Kevin Wayne

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.

« Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

= Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems
Brute force. Check all pairs of points p and q with ©(n?) comparisons

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

10/12/11

10/12/11

Closest Pair of Points: First Attempt Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants. Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

o
o o 00
o o o o o o o
o o o
° ° o o ©° o o
o o
o ° °© ° o
o o ° . o o © oo
o o o
o o
o) [}
o [}
o ° o o o o ° o o o
o o
° o
o
o [}
° o ° % ° o °
o ° ° o
2

Closest Pair of Points Closest Pair of Points

Algorithm.

Algorithm.
. Divide: draw vertical line L so that roughly 2n points on each side.

« Divide: draw vertical line L so that roughly 3n points on each side.
« Conquer: find closest pair in each side recursively.

o o o o
L ° ° L ° o
o o o o o o
o o
o o
o ° ° ° o
o ° ° o /
o o ° . o o 21 o
o o o o
o o
o o
o ° o o ° 3:2/0 ° o o °
o
o o
o o ° o ° o
o ° ° o
23

Copyright 2000, Kevin Wayne

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly n points on each side.

« Conquer: find closest pair in each side recursively.
« Combine: find closest pair with one point in each side. — seems like o(n?)

« Return best of 3 solutions.

o o
L ©° o
o o o
o
o
° o
° 8
Lo
° o fZl
o ° o
o
12 o °
o/o o o o
o
o o °
° o
25

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < o.
« Observation: only need to consider points within & of line L.

10/12/11

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 5.
« Observation: only need to consider points within 8 of line L.
« Sort points in 28-strip by their y coordinate.

Copyright 2000, Kevin Wayne

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 3.

« Observation: only need to consider points within & of line L.
« Sort points in 23-strip by their y coordinate.
= Only check distances of those within 11 positions in sorted list!

[} L) ° [}
o @ o
o ° ® °
- " el®| S,
" o ° 8 = min(12, 21)
O/O ° o o o
o o @ o
©) o

Closest Pair of Points

Def. Let s; be the point in the 28-strip, with

the i smallest y-coordinate.
ooo
Claim. If |i-j| =12, then the distance between —j
siand s; is af least d. ®
Pf.
= No two points lie in same $8-by-30 box.
= Two points at least 2 rows apart
have distance = 2(38). « 2 rows
i —@
Fact. Still true if we replace 12 with 7.
®
oo
d S

nfe
o>

ol
>

Closest Pair Algorithm

Closest-Pair(p;, .., Py) {
Compute separation line L such that half the points
are on one side and half on the other side.

8, = Closest-Pair(left half)
8, = Closest-Pair(right half)
d = min(3,, 3,)

Delete all points further than § from separation line L
Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these

distances is less than §, update §.

return §.

O(n log n)

2T(n/ 2)

O(n)

O(n log n)

O(n)

Closest Pair of Points: Analysis

Running time.

T(n) s 2T(n/2) + O(nlogn) = T(n) = O(nlog’n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.

« Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.
= Sort by merging two pre-sorted lists.

T(n) s 2T(n/2) + O(n) = T(n) = O(nlogn)

Copyright 2000, Kevin Wayne

10/12/11

