

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2} n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n^{2}.
- Divide-and-conquer: $n \log n$.

Divide et impera
Veni, vidi, vici.

- Julius Caesar

5.1 Mergesort

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Merging

Merging. Combine two pre-sorted lists into a sorted whole.
How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

A Useful Recurrence Relation

Def. $T(n)=$ number of comparisons to mergesort an input of size n.
Mergesort recurrence

```
T(n)\leq{{\begin{array}{ll}{0}&{T([n/2\rceil)}\end{array}+T(\lfloorn/2\rfloor)+n
solve left half
```

Solution. $T(n)=O\left(n \log _{2} n\right)$

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace \leq with $=$.

Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.

Pf. For $n>1$:

$$
\begin{aligned}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n} \\
& =\frac{T(n / 2)}{n / 2} \\
& +1 \\
& =\frac{T(n / 4)}{n / 4} \\
\cdots & +1+1 \\
& =\frac{T(n / n)}{n / n}
\end{aligned}+\underbrace{1+\cdots+1}_{\log _{2} n}
$$

$=\log _{2} n$

Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.

$$
\begin{aligned}
& t \\
& \text { assumes } n \text { is a power of } 2
\end{aligned}
$$

```
T}(n)={\begin{array}{ll}{\begin{array}{ll}{0}&{\mathrm{ if }n=1}\\{\mp@subsup{\underbrace}{\mathrm{ soring both halves merging}}{2T(n)}}&{\mathrm{ otherwise }}\end{array}}}
```

Pf. (by induction on n)

- Base case: $n=1$.
- Inductive hypothesis: $T(n)=n \log _{2} n$.
- Goal: show that $T(2 n)=2 n \log _{2}(2 n)$.

```
T(2n)}=2T(n)+2
    = 2n log}2n+2
    2n(\mp@subsup{\operatorname{log}}{2}{}(2n)-1)+2n
    = 2n 年2 (2n)
```


5.3 Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_{1}, a_{2}, \ldots, a_{n}$.
- Songs i and j inverted if $i<j$, but $a_{i}>a_{j}$.

Songs					
	A	B	C	D	E
Me	1	2	3	4	5
You	1	3	4	2	5

Brute force: check all $\Theta\left(n^{2}\right)$ pairs i and j.

Counting Inversions: Divide-and-Conquer
Divide-and-conquer.

- Divide: separate list into two pieces.

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad Divide: $O(1)$.

| 1 | 5 | 4 | 8 | 10 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{6}$

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces
- Conquer: recursively count inversions in each half

Counting Inversions: Divide-and-Conquer

Divide-and-conquer

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_{i} and a_{j} are in different halves, and return sum of three quantities.

1	5	4				2	6	9	12	11	3	7	Divide: $O(1)$.
1	5	4	8	10			6	9	12	11	3	7	Conquer: $2 \mathrm{~T}(\mathrm{n} / 2)$
5 blue-blue inversions 8 green-green inversions								gree	en-gre	en inv	vers		

$5-3,4-3,8-6,8-3,8-7,10-6,10-9,10-3,10-7$

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count (L) 1
if list L has one element return 0 and the list I

Divide the list into two halves A and B
($\left.\mathrm{r}_{\mathrm{A}}, \mathrm{A}\right) \leftarrow$ Sort-and-Count (A)
$\left(r_{\mathrm{B}}\right.$, L) \leftarrow Merge-and-Count (A, B)
return $r=r_{A}+r_{B}+r$ and the sorted list L
\}
5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

```
fast closest pair inspired fast algorithms for these problems
```

Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons
1-D version. $O(n \log n$) easy if points are on a line.

Assumption. No two points have same \times coordinate
I
to make presentation cleaner

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $i^{i^{\text {th }}}$ smallest y-coordinate.

Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ.

Pf.

- No two points lie in same $\frac{1}{2} \delta$-by- $\frac{1}{2} \delta$ box.
- Two points at least 2 rows apart have distance $\geq 2\left(\frac{1}{2} \delta\right)$. .

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

Closest Pair of Points: Analysis

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate
- Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

