CSE 421: Introduction to
iAlgorithms

Network Flow

Paul Beame



i Bipartite Matching

= Given: A bipartite graph G=(V,E)

= McE is a matching in G iff no two edges
in M share a vertex

= Goal: Find a matching M in G of
maximum possible size



i Bipartite Matching
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ﬁ The Network Flow Problem
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= How much stuff can flow from s to t?



ipartite matching as a special case
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ﬁ Net Flow: Formal Definition

Given: Find:
A digraph G = (V,E) A flow function f: E — R s.t., for all
Two vertices s,tinvV ~ WV:

(source & sink) = 0 <f(u,v) <c(u,v)
A Capacjty C(U,Vz >0 E— [Capacity Constraint]
for each (U,V) e E « ifu# s.i, l.e. fOUt(U)=f in(U)

(and c(u,v) = 0 for all [Flow Conservation]

non-edges (u.v) Maximizing total flow v(f) = fout(s)

Notation:
fi“(v) - Ze=(u,v)eEf(uJ¥) fout(v) - Zez(v,w)eEf(v’w)
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ﬁ Example: A Flow Function

flow/capacity, not .66...

O—22 (2B )
fin(u)=f(s,u)=2=f(u,t)=fou(u)




= Not shown: f(u,v) if =0

= Note: max flow > 4 since
f is a flow function, with v(f) = 4




i Max Flow via a Greedy Alg?

While there is an s — t path in G
Pick such a path, p
Find c, the min capacity of any edge in p
Count ¢ towards the flow value
Subtract ¢ from all capacities on p
Delete edges of capacity 0
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i Max Flow via a Greedy Alg?

While there isans — t path in G
Pick such a path, p
Find c, the min capacity of any edge in p
Count ¢ towards the flow value
Subtract ¢ from all capacities on p
Delete edges of capacity 0

= This does NOT always find a max flow:
If pick s -b —a —t

first, flow stuck at 2.
But flow 3 possible.
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A Brief History of Flow

# | year | discoverer(s) bound
1 | 1951 | Dantzig O(n*mU)
2 | 1955 | Ford & Fulkerson O(nmU)
3| 1970 | Dinitz O(nm?)
Edmonds & Karp
1 1970 | Dinitz O(m%m)
5 | 1972 | Edmonds & Karp O(m?logU)
Dinitz
6 | 1973 | Dinitz O(nmlogU)
Gabow
7 | 1974 | Karzanov 0(n?)
8 | 1977 | Cherkassky O(n?\/m)
9 | 1980 | Galil & Naamad O(nmlog®n)
10 | 1983 | Sleator & Tarjan O(nmlogn)
11 | 1986 | Goldberg & Tarjan O(nmlog(n®/m))
12 | 1987 | Ahuja & Orlin O(nm + n?logU)
13 | 1987 | Ahuja et al. O(nmlog(n/logU/(m + 2))
14 | 1989 | Cheriyan & Hagerup | E(nm + n?log” n)
15 | 1990 | Cheriyan et al. O(n®/logn)
16 | 1990 | Alon O(nm + n¥3logn)
17 | 1992 | King et al. O(nm + n**¢)
18 | 1993 | Phillips & Westbrook | O(nm(log,,,,, n + log” * n))
19 | 1994 | King et al. O(nmlog,, /(niogn) ™)
20 | 1997 | Goldberg & Rao O(m3? log(n?/m) logU)
O(n*3mlog(n?/m)logU)
2012  Orlin + King et al.

n = # of vertices
m= # of edges
U = Max capacity

Source: Goldberg & Rao,
FOCS ‘97
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Greed Revisited:
ﬁ Residual Graph & Augmenting Path
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Greed Revisited:
ﬁ Residual Graph & Augmenting Path

Residual Graph
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Greed Revisited:
ﬁ Residual Graph & Augmenting Path




Greed Revisited:
ﬁ Residual Graph & Augmenting Path
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Greed Revisited:
ﬁ Residual Graph & Augmenting Path

Residual Graph
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Greed Revisited:
ﬁ An Augmenting Path

New Residual Graph
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ﬁ Residual Capacgity- ol

= The residual gapacity (w.r.t. f) of (u,v) Iis
c;(u,v) = c(u,v) - f(u,v) if f(u,v)<c(u,v)

and cfég&\kj(v,u) if f(v,u)>0

= e.g. C«S,b)=7; cs(a,x) =1; ci(x,a) =3
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Residual Graph
i & Augmenting Paths

= The residual graph (w.r.t. f) is the graph
G; = (V,E;), where
E;={(u,v)|cquyv) >0}
= Two kinds of edges
= Forward edges
= f(u,v)<c(u,v) so c4(u,v) = c(u,v) - f(u,v) >0
« Backward edges
= f(u,v)>0 so cv,u) =f(u,v)>0
= An augmenting path (w.r.t. f) is a simple
s — t path in G;.
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ﬁ A Residual Network







ﬁ Augmenting A Flow

augment(f,P) J I 1e “'%\,\

Cp<—Ming, \\cp C4(U,V)  “bottleneck(P)”
for each eec P
if e is a forward edge then
increase f(e) by cp
else (e is a backward edge)
decrease f(e’) by cp where e’ = reverse of e
endif e Te M/'M/
endfor j'sVWMJ
return(f) ed A
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ﬁ Augmenting A Flow




i Claim: Augmented flow is legal

If G; has an augmenting path P, then the
function f'=augment(f,P) is a legal flow.

Proof:

= " and f differ only on the edges of P so
only need to consider such edges (u,v)
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i Proof: Augmented flow is legal

= If (u,v) is a forward edge then
f'(u,v)=f(u,v)+cp < f(u,v)+c4(u,v)
= f(u,v)+c(u,v)-f(u,v)
=c(U,v)
= If (u,v) is a backward edge then f and f’
differ on flow along (v,u) instead of (u,v)
f'(v,u)=f(v,u)-cp > f(v,u)-c4(u,v)
= f(v,u)-f(v,u)=0
= Other conditions like flow conservation
still met

26



| Ford-Fulkerson Method
‘ﬁ [L('dJAJVI b«(]’
edge

Start wjth =0 for every

While G~fhas an augmenting path,

augment

= Questions:
= Does it halt?
= Does it find a maximum flow?
= How fast?
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Observations about Ford-Fulkerson

i Algorithm

= At every stage the capacities and flow values
are always integers (if they start that way)

= The flow value v(f’)=v(f)+cp>v(f) for
f’=augment(f,P) SO
= Since edges of residual capacity 0 do not appear
in the residual graph
u Let C=Z(S,U)EE C(S,U)
» v(f)<C ,

= F-F does at most C rounds of augmentation since
flows are integers and iﬁrease by at least 1 per

step
BS
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i Running Time of Ford-Fulkerson

= For =0, Gf=G

= Finding an augmenting path in G, is&
graph search O(n+m)=0O(m) time

= Augmenting and updating G; is O(n)
time

= Total O(mC) time

= Does it find a maximum flow?

= Need to show that for every flow f that isn’t
maximum G; contains an s-t-path
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ﬁ Cuts

= A partition (A,B) of V is an s-t-cut if
= ScA, teB




; ﬁ Convenient Definition

(
= FOUA)=X a wen f(V,W) = '@w ‘ Cd h

Lﬁ )
= fN(A)=2p yea F(UV) W 'B

)l fm B A
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i Two claims
= For any flow f and any cut (A,B), ; ’>’f)
}1)%2 net flow across/thmquals the
total flow, i.e., v(f) = fo4{(A)- fin(A), and

the net flow across the cut cannot exceed

)
( the capacity of the cut,
i.e. fou(A)-fin(A) < ¢(A,B)
Vi) 2= bV e

= Corollary : | ol Cut Cap =3
Max flow < Min cut ; Net Flow =1

Qﬁ
1 CutCap =2
1 Net Flow = 1
32
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Proof of Claim 1

1

Consider a set A with seA, te A

fout(A)-fin(A) =Xy p wea F(V.W)-Zicn yen F(ULV)
We can add flow values for edges with both
endpoints in A to both sums and they would cancel
out so
fOUt(A)_fin(A)= ZVE A, weV f (V,W)'ZVE A, ueV f (U,V)

= ZVEA (ZWEV f (V,W) - ZueV f (U,V))

=X, ffeut (v) - fin(v))

=fout(s)_fin(s)
since all other vertices have fout(v)=fin(v)
v(f) = fou(s) and fin(s)=0
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ﬁ Proof of Claim 2

= v(f)=fout(A)-fin(A) 2,9 ﬂl_ Q

< fout(A)

= ZVEA,WEAfM
— ZVEA we A CM)

:cz(‘«ie%;\,e c(v,w) p
R < e AR)

—
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i Max Flow / Min Cut Theorem

Claim 3 For any flow f, if G; hasugmenting
path then there is some s-t-cut (A,B) such
that v(f)=C(A.B) (proof on next slide)

= We know by Claims 1 & 2 that any flow f’ satisfies
v(f’) < c(A,B) and we know that F-F runs for finite
time until it finds a flow f satisfying conditions of
Claim 3

= Therefore by Claim 3 for any flow £, v(f’) <v(f)

= Theorem (a) F-F computes a maximum flow in G

(b) For any graph G, the value v(f) of a maximum
Cflow = minimum capacity ¢(A,B) of any s-t-cutin G
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Y 44
ﬁ Claim 3 rd"‘h}

LetA={u|Elanpathin@(romstou}

saturated (y ,\)7%6:(-

f(u,v)=c(u,v)

This is true for every edge crossing the cut, i.e.

f*(A) = f(u,v)=3 c(u,v)=c(A,B) and fin(A)=0 so
ucA ucA v(f)=fout(A)-fin(A)=c(A,B)

C(ABI ) 36






i Flow Integrality Theorem

If all capacities are integers
= The max flow has an integer value

» Ford-Fulkerson method finds a max flow in
which f(u,v) is an integer for all edges (u,v)
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i Corollaries & Facts

= |f Ford-Fulkerson terminates, then it’s
found a max flow.

= It will terminate if c(e) integer or rational
(but may not if they’re irrational).

= However, may take exponential time, ¢
even with integer capacities: c,/*> ’[‘y\]/cé

SN2yl
C
S %’f% t c =109, say 1

C ,l C-(

2C IWI Gy
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Bipartite matching as a special case

i of flow

Integer flows implies each flow is just a subset of the edges

Therefore flow corresponds to a matching

O(mMC)=0O(nm)/running time
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i Capacity-Scaling algorithm

= General idea:
= Choose augmenting paths P with ‘large’
capacity cp
= Can augment flows along a path P by any
amount A <cp

= Ford-Fulkerson still works

=« Get a flow that is maximum for the high-
order bits first and then add more bits later

40
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? Capacity on each edge is at most 1
% (either 0 or 1 times A=4)
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ﬁ Capacity Scaling Bit 2

217

Residual capacity across min cut is at mos@
(either 0 or 1 times A=2)

4 o SHP! oa«‘)
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Capacity Scaling Bit 2

"L

10 ry

@ 10/10 ‘ @

Residual capacity across min cut is at most m

= < m augmentations
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ﬁ Capacity Scaling Bit 3

010/100

100/101

Residual capacity across min cut is at most m

(either 0 or 1 times A=1)
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Capacity Scaling Bit 3

010/100

After < m augmentations
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ﬁ Capacity Scaling Final
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ﬁ Capacity Scaling Min Cut
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e
i Total time for capacity scaling -Ma\

. L (a
= log, U rounds where U is largest capacity g‘;‘mﬂ

—

= At most m augmentations per round el
= Let c; be the capacities used in the it" round gnd f;
be the maxflow found in the it round
= For any edge (u,v), ¢;,4(u,v) < 2c;(u,v)+1
= i+18tround starts with flow f=2f; -
= Let (A,B) be a min cut from the it round
- v(f)=c,(A,B) so v(f)=2c,(A,B)
e V(fi,1) < C,11(A,B) < 2¢,(A,B)+m =v(f)+m

O(m) time per augmentation

= Total time O(m? log U) /‘L'A VCJ/

! 3

M\»(u* v



i Edmonds-Karp Algorithm

= Use a shortest augmenting path
(via Breadth First Search in residual graph

= Time: O(n m?)

P

Tat & g}m‘“’b

PN

)
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ﬁ BFS/Shortest Path Lemmas
ms;&UG‘ ?Wﬂ

Distance from s in G; is never reduced by:

Deleting an edge
Proof: no new (hence no shorter) path created

Adding an edge (u,v), provided v is nearer
than u

Proof: BFS is unchanged, since v visited before
(u,v) examined




i Key Lemma

Let f be a flow, G; the residual graph, and
P a shortest augmenting path. Then no
vertex is closer to s after augmentation
along P.

Proof: Augmentation along P only deletes
forward edges, or adds back edges that
go to previous vertices along P
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i Augmentation vs BFS




i Theorem

The Edmonds-Karp Algorithm performs O(mn) flow
augmentations

Proof:

Call (&gllrg_@iljor augmenting path P if it’s closest to
s havingmin residual capacity
It will disappear from G; after augmenting along P

In order for (u,v) to be critical again the (u,v) edge
must re-appear in G; but that will only happen

when the distance to u has increased bx 2 (next slide)

It won't be critical again until farther from s
SO each edge critical at most n/2 times




i Critical Edges in G,

Shortest s-t path P in G;

>C c c
= 2B @—r - — D@D
critical edge | di(s,v)=d;(s,u)+1 since this is a shortest path
— v

After augmenting along P

>0
O 22 P P—r O

For (u,v) to be critical later for some flow f* it must be in G
so must have augmented along a shortest path containing (v,u)

3 .
00000
- PR
. .®
. ws®
-------
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. i Corollary

= Edmonds-Karp runs in O(nm2 time

A A M’miahq,
p el <
o(

- QJ‘O\?\UW\' > )
_— e ]C( o /f )
£ uutﬂ/w\ ( lws (‘b [.
C\ \ eV —
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Project Selection
i a.k.a. The Strip Mining Problem

s Given

= a directed acyclic graph G=(V,E)
representing precedence constraints on
tasks (a task points to its predecessors)

= a profit value p(v) associated with each
task ve V (may be positive or negative)

= Find

= a set AcV of tasks that is closed under
predecessors, i.e. if (u,v)e E and ue A then

ve A, that maximizes Profit(A)=2,_, p(V)

59



ﬁ Project Selection Graph

P
Wi

Each task points to its predecessor tasks
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ﬁ Extended Graph
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ﬁ Extended Graph G’

(s)

For each vertex v

If p(v)=0 add (s,v) edge
with capacity p(v)

If p(v)<0 add (v,t) edge

with capacity —p(v)
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|

Extended Graph G’

Want to arrange capacities on edges of G so that for
minimum s-t-cut (S,T) in G’, the set A=S-{s}

= satisfies precedence constraints

= has maximum possible profitin G

Cut capacity with S={s} is just C=X,. ;)20 P(V)

= Profit(A) < C for any set A
To satisfy precedence constraints don’t want any
original edges of G going forward across the
minimum cut

= That would correspond to a task in A=S-{s} that had a
predecessor not in A=S-{s}

Set capacity of each of the edges of G to C+1
= The minimum cut has size at most C
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ﬁ Extended Graph G’




ﬁ Extended Graph G’

Cut value

=13+3+2+3+4

=13+3
+C-4-8-10-11-12-14




i Project Selection

= Claim Any s-t-cut (S,T) in G’ such that
A=S-{s} satisfies precedence constraints has
capacity
c(S,T)=C - X,_,p(V) = C - Profit(A)

= Corollary A minimum cut (S,T) in G’ yields
an optimal solution A=S-{s} to the profit
selection problem

= Algorithm Compute maximum flow f in G’,
find the set S of nodes reachable from s in G’;
and return S-{s}
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i Proof of Claim

= A=S-{s} satisfies precedence constraints

No edge of G crosses forward out of A since those
edges have capacity C+1

Only forward edges cut are of the form (v,t) for
ve A or (s,v) for vg A

The (v,t) edges for ve A contribute
ZVGA:p(V)<0 -p(V) = ZVE A:p(v)<0 p(V)
The (s,v) edges for v¢ A contribute
Zve A: p(v)>0 P(V)=C'Zve A: pvz0 P(V)
Therefore the total capacity of the cut is
¢(S,T) =C - X,_, p(v) =C-Profit(A)
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