CSE 421: Introduction
to Algorithms

Greedy Algorithms

Shayan Oveis Gharan

Directed Acyclic Graphs (DAG)

A DAG is a directed acyclic graph, i.e.,
one that contains no directed cycles.

Def:. A topological order of a directed graph G = (V, E) is an

ordering of its nodes as v, Vv, ..., V, SO that for every edge
(Vi, v;) we have i <].

a topological ordering of that DAG-

a DAG

all edges left-to-right 5

DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Pf. (by induction on n)
Base case: trueifn=1.

IH: Every DAG with n-1 vertices has a topological ordering.

|S: Given DAG with n > 1 nodes, find a source node v.
G — {v}is aDAG, since deleting v cannot create cycles.

Reminder: Always remove
vertices/edges to use IH

By IH, G — {v} has a topological ordering.
Place v first in topological ordering; then append nodes of G - { v }
in topological order. This is valid since v has no incoming edges.

A Characterization of DAGs

G has a
topological order

I
—

G is a DAG

Topological Order Algorithm: Example

Topological Order Algorithm: Example

Topological order: 1, 2,3,4,5,6,7

Topological Sorting Algorithm

Maintain the following:
count[w] = (remaining) number of incoming edges to node w

S = set of (remaining) nodes with no incoming edges
Initialization:
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
S =S u {w} for all w with count[w]=0
Main loop:
while S not empty
* remove some v from S
* make v next in topo order O(1) per node
« for all edges from v to some w O(1) per edge
—decrement count[w]
—add w to S if count[w] hits O
Correctness: clear, | hope
Time: O(m + n) (assuming edge-list representation of graph)

DFS on Directed Graphs

« Before DFS(s) returns, it visits all previously unvisited
vertices reachable via directed paths from s

« Every cycle contains a back edge in the DFS tree

«-., back edges

forward
edges .**; .

cross edges

Summary

Graphs: abstract relationships among pairs of objects

Terminology: node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected

Representation: Adjacency list, adjacency matrix
Nodes vs Edges: m = O(n?), often less

BFS: Layers, queue, shortest paths, all edges go to same
or adjacent layer

DFS: recursion/stack; all edges ancestor/descendant

Algorithms: Connected Comp, bipartiteness, topological
sort 9

Greedy Algorithms

Coin Changing Problem
\ Greedy Algorithm /

Greedy Strategy

Goal: Given currency denominations: 1, 5, 10, 25, 100,
give change to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm: At each iteration, give the /argest
coin valued < the amount to be paid.

Greedy is not always Optimal

Observation: Greedy algorithm is sub-optimal for US
postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢. . |
Greedy: 100,34,1,1,1,1,1, 1. ~ ‘
Optimal: 70, 70. |

Lesson: Greedy is short-sighted. Always chooses the most
attractive choice at the moment. But this may lead to a dead-
end later.

12

Greedy Algorithms Outline

Pros

Intuitive
Often simple to design (and to implement)
Often fast

Cons

Often incorrect!

Proof techniques:

Stay ahead
Structural
Exchange arguments

13

Interval Scheduling

| f
g_,nme

01234567891
01

Interval Scheduling

« Job j starts at s(j) and finishes at f(j).
« Two jobs compatible if they don’t overlap.
« Goal: find maximum subset of mutually compatible jobs.

Time

15

Greedy Strategy

Sort the jobs in some order. Go over the jobs and take as
much as possible provided it is compatible with the jobs
already taken.

Main question:

« What order?

* Does it give the Optimum answer?

 Why?

16

Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as
possible provided it is compatible with the jobs already taken.

[Earliest start time] Consider jobs in ascending order of start time s;.
[Earliest finish time] Consider jobs in ascending order of finish time f;.

[Shortest interval] Consider jobs in ascending order of interval length
fi-s;.

[Fewest conflicts] For each job, count the number of conflicting jobs
¢;. Schedule in ascending order of conflicts c;.

17

Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job
provided it's compatible with the ones already taken.

Sort jobs by finish times so that £(1) < £(2) < ... < £(n).
A< @
for j =1 ton {
if (job j compatible with A4)
A< AuU{j}
}

return A

Implementation. O(n log n).
« Remember job j* that was added last to A.
« Job jis compatible with A if s(j) > f(j*)-.

18

Greedy Alg: Example

B

H . Time

19

Correctness

Theorem: Greedy algorithm is optimal.

Pf. (technique: “Greedy stays ahead”)

Letiq, Iy, ... I, be jobs picked by greedy, |, 5, ... j», those in some
optimal solution in order.

We show f(i.) < f(j,) for all r, by induction onr.

Base Case: i; chosen to have min finish time, so f(iy) < f(j4).
IH: f(i,) < f(j,) for somer

1S: Since f(i,.)) < f(,) <s(r+1), jr+1 IS among the candidates
considered by greedy when it picked i, 4, & it picks min finish, so

f(ire1) < T(re1)

Observe that we must have k > m, else j,,4 is among
(nonempty) set of candidates for i1 20

Interval Partitioning
Technique: Structural

Interval Partitioning

Lecture j starts at s(j) and finishes at f(j).
Goal: find minimum number of classrooms to schedule all lectures so that no
two occur at the same time in the same room.

Room4—~ e j

Room 3 o d g

\RLrnz/ eeeb - s=h=

9 930 10 1030 11 11:30 12 12:30 1 1:30 2 230 3 330 4 430 _
Time 2>

Interval Partitioning

Note: graph coloring is very hard in
general, but graphs corresponding to
interval intersections are simpler.

9 930 10 1030 11 11:30 12 12:30 1 1:30 2 230 3 330 4 430 _
Time 23

A Better Schedule

This one uses only 3 classrooms

e e

9 930 10 1030 11 11:30 12 12:30 1 130 2 2:30 3 330 4 430 N
me

24

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

—_—
—_—

f

o
o
—_— _— —_— _— —_— _— —_— _—

a i

9 930 10 1030 fi 1130 12 12:30] 1 130

230 3 330 4 4:30

2
:
!
g !
;
l
|
;
b

Time 25

A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

Key observation. Number of classrooms needed > depth.

Ex: Depth of schedule below = 3 = schedule below is optimal.

Q. Does there always exist a schedule equal to depth of

intervals?
c ci f i
b | g i
, a_ I e h
9 930 10 1030 1 1130, 12 1230 1 130 2 230 3 330 4 430

Time 26

A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of
start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that s; < s, < ... < s,.
d «< 0

for j =1 to n {
if (lect j is compatible with some classroom k, 1< k<d)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d ¢« d+1

Implementation: Exercise!

27

Correctness

Observation: Greedy algorithm never schedules two
Incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.
Pf (exploit structural property).
Let d = number of classrooms that the greedy algorithm allocates.

Classroom d is opened because we needed to schedule a job,
say |, that is incompatible with all d-1 previously used classrooms.

Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than s(j).

Thus, we have d lectures overlapping at time s(j) + €, i.e.
depth > d
“OPT Observation” = all schedules use > depth classrooms,

so d = depth and greedy is optimal - 78

