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Directed Acyclic Graphs (DAG)

A DAG is a directed acyclic graph, i.e.,
one that contains no directed cycles.

Def:. A topological order of a directed graph G = (V, E) is an

ordering of its nodes as v, Vv, ..., V, SO that for every edge
(Vi, v;) we have i <].

a topological ordering of that DAG-

a DAG

all edges left-to-right 5



DAG => Topological Order

Lemma: If G is a DAG, then G has a topological order

Pf. (by induction on n)
Base case: trueifn=1.

IH: Every DAG with n-1 vertices has a topological ordering.

|S: Given DAG with n > 1 nodes, find a source node v.
G — {v}is aDAG, since deleting v cannot create cycles.

Reminder: Always remove
vertices/edges to use IH

By IH, G — {v} has a topological ordering.
Place v first in topological ordering; then append nodes of G - { v }
in topological order. This is valid since v has no incoming edges.



A Characterization of DAGs

G has a
topological order

I
—

G is a DAG




Topological Order Algorithm: Example




Topological Order Algorithm: Example

Topological order: 1, 2,3,4,5,6,7



Topological Sorting Algorithm

Maintain the following:
count[w] = (remaining) number of incoming edges to node w

S = set of (remaining) nodes with no incoming edges
Initialization:
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
S =S u {w} for all w with count[w]=0
Main loop:
while S not empty
* remove some v from S
* make v next in topo order O(1) per node
« for all edges from v to some w O(1) per edge
—decrement count[w]
—add w to S if count[w] hits O
Correctness: clear, | hope
Time: O(m + n) (assuming edge-list representation of graph)



DFS on Directed Graphs

« Before DFS(s) returns, it visits all previously unvisited
vertices reachable via directed paths from s

« Every cycle contains a back edge in the DFS tree

«-., back edges

forward
edges .**; .

cross edges



Summary

Graphs: abstract relationships among pairs of objects

Terminology: node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected

Representation: Adjacency list, adjacency matrix
Nodes vs Edges: m = O(n?), often less

BFS: Layers, queue, shortest paths, all edges go to same
or adjacent layer

DFS: recursion/stack; all edges ancestor/descendant

Algorithms: Connected Comp, bipartiteness, topological
sort 9



Greedy Algorithms

Coin Changing Problem
\ Greedy Algorithm /




Greedy Strategy

Goal: Given currency denominations: 1, 5, 10, 25, 100,
give change to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm: At each iteration, give the /argest
coin valued < the amount to be paid.




Greedy is not always Optimal

Observation: Greedy algorithm is sub-optimal for US
postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢. . |
Greedy: 100,34,1,1,1,1,1, 1.  ~ ‘
Optimal: 70, 70. |

Lesson: Greedy is short-sighted. Always chooses the most
attractive choice at the moment. But this may lead to a dead-
end later.
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Greedy Algorithms Outline

Pros

Intuitive
Often simple to design (and to implement)
Often fast

Cons

Often incorrect!

Proof techniques:

Stay ahead
Structural
Exchange arguments
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Interval Scheduling
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Interval Scheduling

« Job j starts at s(j) and finishes at f(j).
« Two jobs compatible if they don’t overlap.
« Goal: find maximum subset of mutually compatible jobs.

Time
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Greedy Strategy

Sort the jobs in some order. Go over the jobs and take as
much as possible provided it is compatible with the jobs
already taken.

Main question:

« What order?

* Does it give the Optimum answer?

 Why?
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Possible Approaches for Inter Sched

Sort the jobs in some order. Go over the jobs and take as much as
possible provided it is compatible with the jobs already taken.

[Earliest start time] Consider jobs in ascending order of start time s;.
[Earliest finish time] Consider jobs in ascending order of finish time f;.

[Shortest interval] Consider jobs in ascending order of interval length
fi-s;.

[Fewest conflicts] For each job, count the number of conflicting jobs
¢;. Schedule in ascending order of conflicts c;.
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Greedy Alg: Earliest Finish Time

Consider jobs in increasing order of finish time. Take each job
provided it's compatible with the ones already taken.

Sort jobs by finish times so that £(1) < £(2) < ... < £(n).
A< @
for j =1 ton {
if (job j compatible with A4)
A< AuU{j}
}

return A

Implementation. O(n log n).
« Remember job j* that was added last to A.
« Job jis compatible with A if s(j) > f(j*)-.
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Greedy Alg: Example

B

H . Time
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Correctness

Theorem: Greedy algorithm is optimal.

Pf. (technique: “Greedy stays ahead”)

Letiq, Iy, ... I, be jobs picked by greedy, |, 5, ... j», those in some
optimal solution in order.

We show f(i.) < f(j,) for all r, by induction onr.

Base Case: i; chosen to have min finish time, so f(iy) < f(j4).
IH: f(i,) < f(j,) for somer

1S: Since f(i,.)) < f(,) <s(r+1), jr+1 IS among the candidates
considered by greedy when it picked i, 4, & it picks min finish, so

f(ire1) < T(re1)

Observe that we must have k > m, else j,,4 is among
(nonempty) set of candidates for i1 20



Interval Partitioning
Technique: Structural



Interval Partitioning

Lecture j starts at s(j) and finishes at f(j).
Goal: find minimum number of classrooms to schedule all lectures so that no
two occur at the same time in the same room.

Room4—~ e j

Room 3 o d g

\RLrnz/ eeeb - s=h=

9 930 10 1030 11 11:30 12 12:30 1 1:30 2 230 3 330 4 430 _
Time 2>



Interval Partitioning

Note: graph coloring is very hard in
general, but graphs corresponding to
interval intersections are simpler.

9 930 10 1030 11 11:30 12 12:30 1 1:30 2 230 3 330 4 430 _
Time 23



A Better Schedule

This one uses only 3 classrooms

e e

9 930 10 1030 11 11:30 12 12:30 1 130 2  2:30 3 330 4 430 N
me
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A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum
number that contain any given time.
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A Structural Lower-Bound on OPT

Def. The depth of a set of open intervals is the maximum
number that contain any given time.

Key observation. Number of classrooms needed > depth.

Ex: Depth of schedule below = 3 = schedule below is optimal.

Q. Does there always exist a schedule equal to depth of

intervals?
c ci f i
b | g i
, a_ I e h
9 930 10 1030 1 1130, 12 1230 1 130 2 230 3 330 4 430

Time 26



A Greedy Algorithm

Greedy algorithm: Consider lectures in increasing order of
start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that s; < s, < ... < s,.
d «< 0

for j =1 to n {
if (lect j is compatible with some classroom k, 1< k<d)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d ¢« d+1

Implementation: Exercise!
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Correctness

Observation: Greedy algorithm never schedules two
Incompatible lectures in the same classroom.

Theorem: Greedy algorithm is optimal.
Pf (exploit structural property).
Let d = number of classrooms that the greedy algorithm allocates.

Classroom d is opened because we needed to schedule a job,
say |, that is incompatible with all d-1 previously used classrooms.

Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than s(j).

Thus, we have d lectures overlapping at time s(j) + €, i.e.
depth > d
“OPT Observation” = all schedules use > depth classrooms,

so d = depth and greedy is optimal - 78



