
CSE 421:  Introduction 

to Algorithms

Terminology: Complexity

Yin-Tat Lee

1



Administrativia Stuffs

HW1 is out.

Please submit to Gradescope

Guidelines:

• You can collaborate, but you must write solutions on your own

• You CANNOT search the solution online

• See Ed for more guidelines.

Tips:

• Rewrite your proof.

• Make sure you use assumptions of the problem

• Make sure it is easy to understand

2



More

Algorithm:

😃😃😃😃😃😃😃😃😃

😃😃😃😃😃😃😃😃😃

😃😃😃😃😃😃😃😃😃

😃😃😃😃😃😃😃😃😃

Runtime:

😃😃😃😃😃😃😃😃😃

Correctness:

😃😃😃😃😃😃😃😃😃

😃😃😃😃😃😃😃😃😃

😃😃😃😃😃😃😃😃😃 3

Exceptions (not limited to):

• If possible, reduce the question into a solved problem,

For example, for stable matching, explain

• What “man” and “woman” are corresponding to

• What their preference are.

• How convert the stable matching to what we 

asked in the question.

• If the algorithm is similar to one in the class,

Simply explain the difference.

Make sure your description is not ambiguous.



Definition for Efficiency in This Course

Worst case complexity:

The worst case running time 𝑇(𝑛) of an algorithm is 

max # steps algorithm takes on any input of size 𝑛.

Definition of 1 step in this course:

• only simple operations (+,*,-,=,if,call,…).

• each operation takes one time step.

• each memory access takes one time step.

• no fancy stuff (add two matrices, copy long string,…).

Definition of efficiency in this course:

An algorithm is efficient if it has polynomial worst case runtime.

4



5

Time Complexity on Worst Case Inputs

Problem size  N

T(N)

𝑁 log2𝑁

2𝑁 log2𝑁



O-Notation

Given two positive functions 𝑓 and 𝑔

• 𝑓 𝑛 = 𝑂(𝑔 𝑛 ) if there is a constant 𝐶 > 0 and 𝑁 st

𝑓 𝑛 ≤ 𝐶𝑔 𝑛 for all 𝑛 > 𝑁

• 𝑓 𝑛 = Ω(𝑔 𝑛 ) if there is a constant 𝐶 > 0 and 𝑁 st

𝑓 𝑛 ≥ 𝐶𝑔 𝑛 for all 𝑛 > 𝑁

• 𝑓 𝑛 = Θ(𝑔 𝑛 ) if 𝑓 𝑛 = O(𝑔 𝑛 ) and 𝑓 𝑛 = Ω(𝑔 𝑛 ), namely

There is a constant 𝐶1, 𝐶2 > 0 and 𝑁 st

𝐶1𝑔(𝑛) ≤ 𝑓 𝑛 ≤ 𝐶2𝑔 𝑛 for all 𝑛 > 𝑁

6



Common Asymptotic Bounds

• Polynomials:

𝑎0 + 𝑎1𝑛 +⋯+ 𝑎𝑑𝑛
𝑑 is 𝑂 𝑛𝑑

• Logarithms: 

log𝑎 𝑛 = 𝑂(log𝑏 𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial

For all 𝑥 > 0, log 𝑛 = 𝑂(𝑛𝑥)

7



Running Time

9

An algorithm runs in polynomial time if 𝑇 𝑛 = 𝑛𝑂(1).

Equivalently, 𝑇 𝑛 = 𝑂(𝑛𝑑) for some constant d.

This 

course

Data

Structures

CSE332

Sublinear 

Algorithms



Why “Polynomial”?

Point is not that 𝑛2000 is a practical bound, or that the 

differences among 𝑛 and 2𝑛 and 𝑛2 are negligible.

• “My problem is in P” is a starting point for a more 

detailed analysis

• “My problem is not in P” may suggest that you need to 

shift to a more tractable variant

10



Other Complexities
Average Case Complexity: 

avg # steps algorithm takes

Communication Complexity: 

max # communication algorithm send between servers 

Space Complexity: 

max # space algorithm needs

Parallel Complexity: 

max length of the longest series of operations that have to be performed 

sequentially due to data dependencies

11



CSE 351 Quiz
What is the cost of following operations? (in terms of cycle for CPU with 1 core)

• Compute a*b+c where a,b,c are float (throughput)

~1/16 cycles

• Cost of unpredictable if (latency)

~20 cycles

• Cost of reading 1 byte from a random location in memory (latency)

~300 cycles

• Cost of reading 1 byte from a random location in a M.2 SSD (latency)

~100k cycles

• Cost of reading 1 byte from a random location in a 7200RPM harddisk (latency)

~10M cycles

• Cost of Elon posting a Twitter from Mars (latency)

~10T cycles 12

Life is simple in 421.

Everything is O(1)



Warning
In real world, not all operations take same amount of time.

13



Warning
In real world, not all memory accesses take same amount of time.

Example:

Improving Google CPU usage by 0.5% via a better hash table

https://www.youtube.com/watch?v=ncHmEUmJZf4
14



CSE 421:  Introduction 

to Algorithms

Terminology: Graph

Yin-Tat Lee

15



Graphs

16

Examples:

• Transportation networks

• Communication networks

• Internet

• Social networks

• Dependency networks



Undirected Graphs G=(V,E)

17

A

2
10

9

8

3

4

B

6

7

11
12

13

Disconnected graph

Isolated vertices

Multi edges

Self loop



Graphs don’t Live in Flat Land

Geometrical drawing is mentally convenient, but 

mathematically irrelevant: 

4 drawings of a single graph:

18

A

7 4

3

A

74

3

A

7
4

3

A

7
4

3



Directed Graphs

19

1

2
10

9

8

3

4

5

6

7

11
12

13

Multi edge

self loop



Terminology

• Degree of a vertex: # edges that touch that vertex

deg(6)=3

• Connected: Graph is connected if there is a path 

between every two vertices

• Connected component: Maximal set of connected 

vertices

20

3

4

5

6

7
2

10

1



Terminology (cont’d)

• Path: A sequence of distinct vertices 

s.t. each vertex is connected 

to the next vertex with an edge

• Cycle: Path of length > 2 that has 

the same start and end

• Tree: A connected graph with no cycles

21

3

4

5

6

2
10

1

2 5

1

34 6



Exercise: Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1

(Every tree has a leaf)

Proof: (By contradiction)

Suppose every vertex has degree ≥ 2.

Start from a vertex 𝑣1 and follow a path, 𝑣1, … , 𝑣𝑖 when we are at 

𝑣𝑖 we choose the next vertex to be different from 𝑣𝑖−1. We can 

do so because deg 𝑣𝑖 ≥ 2.

The first time that we see a repeated vertex (𝑣𝑗 = 𝑣𝑖) we get a 

cycle. 

We always get a repeated vertex because 𝐺 has finitely many 

vertices

22

𝑣1 𝑣5𝑣4𝑣2 𝑣3



Exercise: Trees and Induction

Claim: Every tree with 𝑛 vertices has 𝑛 − 1 edges.

Proof: (Induction on 𝑛.)

Base: 𝑛 = 1, the tree has no edge

Induction: Let 𝑇 be a tree with 𝑛 vertices.

So, 𝑇 has a vertex 𝑣 of degree 1.

Remove 𝑣 and the neighboring edge, and let 𝑇’ be the new 

graph.

We claim 𝑇’ is a tree: It has no cycle, and it must be  

connected.

So, 𝑇’ has 𝑛 − 2 edges and 𝑇 has 𝑛 − 1 edges.

23



Exercise: Degree Sum

Claim: In any undirected graph, the number of edges is 

equal to Τ1 2 σvertex 𝑣 deg(𝑣)

Pf: σvertex 𝑣 deg(𝑣) counts every edge of the graph exactly 

twice; once from each end of the edge.

24

3

4

5

6

7
2

10

1

|E|=8


vertex 𝑣

deg 𝑣 = 2 + 2 + 1 + 1 + 3 + 2 + 3 + 2 = 16



Exercise: Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree 

vertices is even

Pf: In previous claim we showed sum of all vertex degrees 

is even. So there must be even number of odd degree 

vertices, because sum of odd number of odd numbers is 

odd.

25

3

4

5

6

7
2

10

1

4 odd degree vertices

3, 4, 5, 6



Exercise: #edges

Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑛 = |𝑉| vertices and 𝑚 = 𝐸
edges.

Claim: 0 ≤ 𝑚 ≤ 𝑛
2

=
𝑛 𝑛−1

2
= 𝑂(𝑛2)

Pf: Since every edge connects two distinct vertices (i.e., G 

has no loops) 

and no two edges connect the same pair of vertices (i.e., G 

has no multi-edges)

It has at most 𝑛
2

edges.

26



Sparse Graphs

A graph is called sparse if 𝑚 ≪ 𝑛2 and it is called dense 

otherwise.

Sparse graphs are very common in practice

• Friendships in social network

• Planar graphs

• Web graph

𝑂(𝑛 +𝑚) is usually much better runtime than 𝑂 𝑛2 .

27



Storing Graphs

Vertex set 𝑉 = 𝑣1, … , 𝑣𝑛 .

Adjacency Matrix: A

• For all, 𝑖, 𝑗, 𝐴 𝑖, 𝑗 = 1 iff 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸

• Storage: 𝑛2 bits

Advantage:

• 𝑂(1) test for presence or absence of edges

Disadvantage:

• Inefficient for sparse graphs both in storage and edge-

access
28

1
2

4

3

1 2 3 4
1 0 0 0 1
2 0 0 1 1
3 0 1 0 1
4 1 1 1 0



Storing Graphs

Adjacency List:

O(𝑛 +𝑚) words

Advantage

• Compact for sparse

• Easily see all edges

Disadvantage

• Bad memory access

• Not good for parallel algorithms.

29

1
2

4

3

4

3

3

2

1

4

2 4

1 2

43



Storing Graphs

Adjacency Array:

O(𝑛 +𝑚) words

Advantage

• Compact for sparse

• Easily see all edges

• Better for memory access

• Better for parallel algorithms.

Disadvantage

• Difficult to update the graph

30

1
2

4

3

4

3

2

1

4

2     4

1     2    3

3     4



Storing Graphs

Implicit Representation:

𝑓(𝑣) outputs an iterator of neighbor of 𝑣.

Aka, f(v)->next()->next()->next()->next()

Advantage

• No space is required

Disadvantage

• Mainly work for abstractly defined graph

31

2,125,922,464,947,725,402,112,000 states.



Storing Graphs

In practice, pick the representation according to the 

algorithm (depends how we want to access the graph).

In this course, we focus on asymptotic runtime. 

We can simply do this:

• For each vertex, use a hash table to store its neighbors

• This gives O(1) time for many operations

Insert, Delete, Find, Next, …

32


