CSE 421
Introduction to Algorithms

Lecture 5: Greedy Algorithms

Greedy Algorithms

Hard to define exactly but can give general properties
 Solution is built in small steps

e Decisions on how to build the solution are made to
maximize some criterion without looking to the future

* Want the ‘best’ current partial solution as if the current step were the
last step

May be more than one greedy algorithm using different criteria to
solve a given problem

* Not obvious which criteria will actually work

PAUL G. ALLEN SCHOOL

Greedy Algorithms

* Greedy algorithms
* Easy to produce
* Fast running times
* Work only on certain classes of problems
* Hard part is showing that they are correct

* Focus on methods for proving that greedy algorithms do work

PAUL G. ALLEN SCHOOL

Interval Scheduling

Interval Scheduling:
* Single resource
* Reservation requests of form:

“Can | reserve it from start time s to finish time f?”
s<f

PAUL G. ALLEN SCHOOL

Interval Scheduling

Interval scheduling:
* Jobj starts at s; and finishes at f; > s;.
* Two jobs i and j are compatible if they don't overlap: f; < S;or f]- < s
* Goal: find maximum size subset of mutually compatible jobs.

a

o 1 2 3 4 5 6 7 8 9 10 1 Time

PAUL G. ALLEN SCHOOL

Greedy Algorithms for Interval Scheduling

* What criterion should we try?

PAUL G. ALLEN SCHOOL

Greedy Algorithms for Interval Scheduling

* What criterion should we try?
* Earliest start time s;

* Shortest request time f; — s;

* Fewest conflicts

PAUL G. ALLEN SCHOOL

Greedy Algorithms for Interval Scheduling

* What criterion should we try?
* Earliest start time s;
* Doesn’t work

* Shortest request time f; — s;
* Doesn’t work

* Fewest conflicts
e Doesn’t work

* Earliest finish time f;
* Works!

PAUL G. ALLEN SCHOOL

Greedy (by finish time) Algorithm for Interval Scheduling

R < set of all requests
A«
while R # & do
Choose request i€ R with smallest finish time f;
Add request i to 4
Delete all requests in R not compatible with request i

return 4

PAUL G. ALLEN SCHOOL

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

PAUL G. ALLEN SCHOOL

Interval Scheduling: Analysis

Claim: 4 is a compatible set of requests and
requests are added to A in order of finish time

 When we add a request to A we delete all incompatible ones from R

Name the finish times of requestsin A as a,, a,, ..., a, in order.

Claim: Let O € R be a set of compatible requests whose finish times in order are
04, 05, ..., 0. Then for every integer k = 1 we have:

a) if O contains a k" request then A4 does too, and
b) a, <o, “Aisaheadof0”

Note that a) alone implies that £ = s which means that 4 is optimal but we also
need b) “stays ahead” to keep the induction going.

PAUL G. ALLEN SCHOOL

Inductive Proof of Claim

Base Case k = 1: A includes the request with smallest finish time, so
if O is not empty thena; <o,

Inductive Step: Suppose that a, < o, and there is a k+1t request in O.
Then k+1t request in O is compatible with a,, a,, ..., a,, since a, < o,,
and o,, < start time of k+1% request in O whose finish time is 0,,,,
= There is a k+1°t request in 4 whose finish time is named a,,,.

Also, since A would have considered both requests and chosen the one
with the earlier finish time, a,,; < 0,,,.

Greedy: a, a, Ak Aprq

OPT: 04 03 Oy Ok+1 u

>
|

PAUL G. ALLEN SCHOOL

Interval Scheduling: Greedy Algorithm Implementation

IA

Sort jobs by finish times so that O <f, < f, < __. L O(nlogn)
A« ¢
last <« O
for J =1 ton {
it (last < s;) 0(n)
A« Auvu{J}
last « T;

}

return A

PAUL G. ALLEN SCHOOL

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
* Lecture j starts at Sj and finishes at f]-.

Goal: find minimum number of rooms to schedule all lectures so that
no two occur at the same time in the same room.

Example: This schedule uses 4 rooms to schedule 10 lectures.

¢ J Can you do better?
c d g
b h
a f [

>

9 230 10 10:30 11 11:30 12 12:30 1 130 2 2:30 3 3:30 4 4:30 Ti
ime

PAUL G. ALLEN SCHOOL

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
* Lecture j starts at Sj and finishes at f]-.

Goal: find minimum number of rooms to schedule all lectures so that
no two occur at the same time in the same room.

Example: This schedule uses only 3 rooms.

c d f J
b g i
« e

>
»

9 230 10 10:30 11 1130 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 Ti
ime

PAUL G. ALLEN SCHOOL

Scheduling All Intervals: Interval Partitioning

Defn: The depth of a set of open intervals is the maximum number that contain any given time.

Key observation: # of rooms needed > depth.

Example: This schedule uses only 3 rooms. Since depth > 3 this is optimal.

/

depth = 3

«

(o
((e]

>
»

9 230 10 10:30 11 1130 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 Ti
ime

PAUL G. ALLEN SCHOOL

A simple greedy algorithm
Sort requests in increasing order of start times (s, f1), ..., (8,, [,,)

last, < 0 //finish time of last request currently scheduled in room 1
fori <1 ton{
j<1
while (request i not scheduled) {
if s;,> last; then
schedule request i in room j
last; < f;
j<—j+1
if last;undefined then last; < 0

}

PAUL G. ALLEN SCHOOL

Interval Partitioning: Greedy Analysis

Observation: Greedy algorithm never schedules two incompatible lectures in the
same room
* Only schedules request i in room j if s; = last;

Theorem: Greedy algorithm is optimal.

Proof:
Let d = number of rooms that the greedy algorithm allocates.

* Room d is allocated because we needed to schedule a request, say j, that is incompatible with
some request in each of the other d — 1 rooms.

* Since we sorted by start time, these incompatibilities are caused by requests that start no later
than s; and finish after s;.

So... we have d requests overlapping at time s; + ¢ for some tiny ¢ > 0.

Key observation = all schedules use > d rooms. =

PAUL G. ALLEN SCHOOL

A simple greedy algorithm Runtime analysis

Sort requests in increasing order of start times (s, f1), ..., (8,, [,,) O(nlogn)

last, < 0 //finish time of last request currently scheduled in room 1
fori <1 ton{
j<1
while (request i not scheduled) {
if ;> last; then

.. . Might need to try all d O(nd)
schedule request i in room j
rooms to schedule a
last. < f; request
i</ d might be as bigas n
j<—j+1
if lastj undefined then lastj<— 0 Worst case ©(n2)

}

PAUL G. ALLEN SCHOOL

A more efficient implementation: Priority queue

Sort requests in increasing order of start times (sy, 1), ..., (S, f,,) O(nlogn)

d«1

schedule request 1 in room 1

last, < f,

insert 1 into priority queue Q with key = last,

for i<—2ton{

J < deletemin(Q) O0(log d)
if ;> last; then {
schedule request i in room j O(Tl log d)
last; « f;
increasekey(j,Q) to last; } O(logd)
else {

d«d+1
schedule request i in room d
last, < f; O (n log n) total
insert d into priority queue Q with key = last;} O(logd)

}

PAUL G. ALLEN SCHOOL

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural” bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

PAUL G. ALLEN SCHOOL

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)
Assume that that greedy algorithm is not optimal.
* Leta,, a,, ... a,denote set of jobs selected by greedy algorithm.

* Leto,, 0,, ... o, denote set of jobs in an optimal solution with
a,; =0,,a,=0,,..,a, =0,for the largest possible value of k.

* Since greedy is not optimal we have s = k + 1.

Compatible job a,,, must exist since job o,,, is a candidate for a compatible job after a,,

Greedy: a, a, a, Ay

v

OPT: 01 02 ok °k+1

PAUL G. ALLEN SCHOOL

v

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)
Assume that that greedy algorithm is not optimal.
* Leta,, a,, ... a,denote set of jobs selected by greedy algorithm.

* Leto,, 0,, ... o, denote set of jobs in an optimal solution with
a,; =0,,a,=0,,..,a, =0,for the largest possible value of k.

* Since greedy is not optimal we have s = k + 1.

Since k is largest, job a,,,# 0,.4 and a,,, finishes at least as early as 0,,, does.

Greedy: a, a, a, Ay

v

OPT: o, 0, Oy Ops1 >

Can come up with another optimal schedule agreeing with Greedy for k+1 steps: Replace 0,,, by a,,;.

PAUL G. ALLEN SCHOOL

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)
Assume that that greedy algorithm is not optimal.
* Leta,, a,, ... a,denote set of jobs selected by greedy algorithm.

* Leto,, 0,, ... o, denote set of jobs in an optimal solution with

a,; =04,a,=0,,..,a,=0,for the largest possible value of k. « Contradiction

* Since greedy is not optimal we have s = k + 1.

Since k is largest, job a,,,# 0,,4 and a,,, finishes at least as early as 0,,, does.

Greedy: a, a, a, Ay

v

)
OPT: 04 0, Oy O k41 R

A 4

Can come up with another optimal schedule agreeing with Greedy for k+1 steps: Replace 0,,, by a;,;. | n

PAUL G. ALLEN SCHOOL

