CSE 421 Introduction to Algorithms

Lecture 5: Greedy Algorithms

Greedy Algorithms

Hard to define exactly but can give general properties

- Solution is built in small steps
- Decisions on how to build the solution are made to maximize some criterion without looking to the future
 - Want the 'best' current partial solution as if the current step were the last step

May be more than one greedy algorithm using different criteria to solve a given problem

Not obvious which criteria will actually work

Greedy Algorithms

- Greedy algorithms
 - Easy to produce
 - Fast running times
 - Work only on certain classes of problems
 - Hard part is showing that they are correct
- Focus on methods for proving that greedy algorithms do work

Interval Scheduling

Interval Scheduling:

- Single resource
- Reservation requests of form:

"Can I reserve it from start time s to finish time f?"

Interval Scheduling

Interval scheduling:

- Job j starts at s_j and finishes at $f_j > s_j$.
- Two jobs i and j are compatible if they don't overlap: $f_i \leq s_j$ or $f_i \leq s_i$
- Goal: find maximum size subset of mutually compatible jobs.

Greedy Algorithms for Interval Scheduling

• What criterion should we try?

Greedy Algorithms for Interval Scheduling

- What criterion should we try?
 - Earliest start time S_i
 - Shortest request time $f_i s_i$
 - Fewest conflicts

Greedy Algorithms for Interval Scheduling

- What criterion should we try?
 - Earliest start time S_i
 - Doesn't work
 - Shortest request time $f_i s_i$
 - Doesn't work
 - Fewest conflicts
 - Doesn't work
 - Earliest finish time f_i
 - Works!

Greedy (by finish time) Algorithm for Interval Scheduling

```
R \leftarrow 	ext{set of all requests} A \leftarrow \varnothing while R \neq \varnothing do Choose request i \in R with smallest finish time f_i Add request i to A Delete all requests in R not compatible with request i return A
```

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's

Interval Scheduling: Analysis

Claim: A is a compatible set of requests and requests are added to A in order of finish time

• When we add a request to \mathbf{A} we delete all incompatible ones from \mathbf{R}

Name the finish times of requests in A as a_1 , a_2 , ..., a_t in order.

Claim: Let $O \subseteq R$ be a set of compatible requests whose finish times in order are $o_1, o_2, ..., o_s$. Then for every integer $k \ge 1$ we have:

- a) if O contains a kth request then A does too, and
- b) $\mathbf{a}_k \leq \mathbf{o}_k$ "A is ahead of \mathbf{O} "

Note that a) alone implies that $t \ge s$ which means that A is optimal but we also need b) "stays ahead" to keep the induction going.

Inductive Proof of Claim

Base Case k = 1: A includes the request with smallest finish time, so if O is not empty then $a_1 \le o_1$

Inductive Step: Suppose that $\mathbf{a}_k \leq \mathbf{o}_k$ and there is a $k+1^{\text{st}}$ request in O.

Then $k+1^{st}$ request in $oldsymbol{0}$ is compatible with $a_1, a_2, ..., a_k$ since $a_k \leq o_k$ and $o_k \leq$ start time of $k+1^{st}$ request in $oldsymbol{0}$ whose finish time is $oldsymbol{0}_{k+1}$

 \Rightarrow There is a k+1st request in A whose finish time is named a_{k+1} .

Also, since A would have considered both requests and chosen the one with the earlier finish time, $\mathbf{a}_{k+1} \leq \mathbf{o}_{k+1}$.

Interval Scheduling: Greedy Algorithm Implementation

```
Sort jobs by finish times so that 0 \le f_1 \le f_2 \le \ldots \le f_n. O(n \log n)

A \leftarrow \emptyset
last \leftarrow 0
for j = 1 to n {
    if (last \le s_j)
        A \leftarrow A \cup \{j\}
    last \leftarrow f_j
}
return A
```

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:

• Lecture j starts at s_j and finishes at f_j .

Goal: find minimum number of rooms to schedule all lectures so that no two occur at the same time in the same room.

Example: This schedule uses 4 rooms to schedule 10 lectures.

Can you do better?

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:

• Lecture j starts at s_j and finishes at f_j .

Goal: find minimum number of rooms to schedule all lectures so that no two occur at the same time in the same room.

Example: This schedule uses only 3 rooms.

Scheduling All Intervals: Interval Partitioning

Defn: The depth of a set of open intervals is the maximum number that contain any given time.

Key observation: # of rooms needed \geq depth.

Example: This schedule uses only 3 rooms. Since depth \geq 3 this is optimal.

A simple greedy algorithm

Sort requests in increasing order of start times $(s_1, f_1), \dots, (s_n, f_n)$

```
\begin{array}{l} \textit{last}_1 \leftarrow \mathbf{0} \  \, / / \text{ finish time of last request currently scheduled in room } \mathbf{1} \\ \text{for } \textit{i} \leftarrow \mathbf{1} \text{ to } \textit{n} \, \{ \\ \textit{j} \leftarrow \mathbf{1} \\ \text{while (request } \textit{i} \text{ not scheduled)} \, \{ \\ \text{if } \textit{s}_i \geq \textit{last}_j \text{ then} \\ \text{schedule request } \textit{i} \text{ in room } \textit{j} \\ \textit{last}_j \leftarrow \textit{f}_i \\ \textit{j} \leftarrow \textit{j} + \mathbf{1} \\ \text{if } \textit{last}_j \text{ undefined then } \textit{last}_j \leftarrow \mathbf{0} \\ \} \\ \end{cases}
```

Interval Partitioning: Greedy Analysis

Observation: Greedy algorithm never schedules two incompatible lectures in the same room

• Only schedules request i in room j if $s_i \geq last_j$

Theorem: Greedy algorithm is optimal.

Proof:

Let d = number of rooms that the greedy algorithm allocates.

- Room d is allocated because we needed to schedule a request, say j, that is incompatible with some request in each of the other d-1 rooms.
- Since we sorted by start time, these incompatibilities are caused by requests that start no later than s_i and finish after s_i .

So... we have d requests overlapping at time $s_i + \varepsilon$ for some tiny $\varepsilon > 0$.

Key observation \Rightarrow all schedules use $\geq d$ rooms.

A simple greedy algorithm

Sort requests in increasing order of start times $(s_1, f_1), \dots, (s_n, f_n)$

 $last_1 \leftarrow 0$ // finish time of last request currently scheduled in room 1

```
j ← 1
```

for $i \leftarrow 1$ to n {

Might need to try all *d* rooms to schedule a request

Runtime analysis

 $O(n \log n)$

0(nd)

d might be as big as n

Worst case $\Theta(n^2)$

A more efficient implementation: Priority queue

```
O(n \log n)
Sort requests in increasing order of start times (s_1, f_1), \dots, (s_n, f_n)
d \leftarrow 1
schedule request 1 in room 1
last_1 \leftarrow f_1
insert 1 into priority queue Q with key = last_1
for i \leftarrow 2 to n {
    i \leftarrow deletemin(Q)
                                                         O(\log d)
   if s_i \ge last_i then {
        schedule request i in room j
                                                                                                       O(n \log d)
        last_i \leftarrow f_i
        increasekey(j,Q) to last<sub>i</sub>}
                                                               O(\log d)
   else {
        d \leftarrow d + 1
        schedule request i in room d
                                                                                                       \Theta(n \log n) total
        last_d \leftarrow f_i
        insert d into priority queue Q with key = last_d}
                                                                      O(\log d)
```

Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Exchange argument: Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)

Assume that that greedy algorithm is not optimal.

- Let a₁, a₂, ... a_t denote set of jobs selected by greedy algorithm.
- Let o_1 , o_2 , ... o_s denote set of jobs in an optimal solution with $a_1 = o_1$, $a_2 = o_2$, ..., $a_k = o_k$ for the largest possible value of k.
- Since greedy is not optimal we have $s \ge k + 1$.

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)

Assume that that greedy algorithm is not optimal.

- Let a₁, a₂, ... a_t denote set of jobs selected by greedy algorithm.
- Let o_1 , o_2 , ... o_s denote set of jobs in an optimal solution with $a_1 = o_1$, $a_2 = o_2$, ..., $a_k = o_k$ for the largest possible value of k.
- Since greedy is not optimal we have $s \ge k + 1$.

Can come up with another optimal schedule agreeing with Greedy for k+1 steps: Replace o_{k+1} by a_{k+1} .

Interval Scheduling: Analysis (Contradiction form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof: (By contradiction)

Assume that that greedy algorithm is not optimal.

- Let a₁, a₂, ... a_t denote set of jobs selected by greedy algorithm.
- Let o_1 , o_2 , ... o_s denote set of jobs in an optimal solution with $a_1 = o_1$, $a_2 = o_2$, ..., $a_k = o_k$ for the largest possible value of k.

• Since greedy is not optimal we have $s \ge k + 1$.

Can come up with another optimal schedule agreeing with Greedy for k+1 steps: Replace o_{k+1} by a_{k+1} .

Contradiction