
CSE 421

Approximation Alg

Shayan Oveis Gharan

1

Midterm
Congratulations! You did great in the midterm
Median ~ 70%
• I did very well in the midterm; so I’ll get a 4.0, Yaay! (not really)

Final is harder and has a significant impact on your final gpa
• I did terrible in midterm, can I still get 3.9 or 4.0? Yes!
• If you are way below median below 50% (midterm grade <35) try

harder
• Will I pass this course, Typically only 4/200 may get below 3.0.
Final will be harder

Midterm Sample Solutions
Problem 2: Alg: Find a cycle C in G. Let e=(u,v) an edge in C. G-e
is a tree, and we can color by 2 colors (proved in class). Use the
third color for vertex u.
Correctness: G has n vertices and n edges and connected=>G has
a cycle C (section 2), Let e=(u,v) an edge in C, G-e is a tree
(proved in class). G-e can be colored with 2 colors (proved in
class). e is the only non-tree edge and a possible violation so using
the third color on v makes sure all adjacent vertices have distinct
colors.
P3) Alg: If G has a vertex of deg 0 output no, o.w. output yes
Correctness: If G has a deg 0 vertex, that is always a source and
sink so impossible. Otherwise, since all vertices has even degree,
G can be partitioined into disjoint cycles (homework 2). Every vertex
has deg>=2, so shows up in at least one cycle. Orienting every
cycle clockwise every vertex will have indegree,outdegree>=1 so
not a source nor a sink.

Possible Wrong answers
Problem 2:
• Delete arbitrary vertex v, color the rest of the graph, then add

back v and color v with a color not used on neighbors.
• Choose v with minimum degree, color v with an available color,

then delete v and color the rest of the graph

Problem 3:
• Same as HW: Orient all edges of the tree away from the root,

orient the rest of the edges arbitrarily.

Q/A
• HW problems are too hard for me

• We have resources to prepare for HW
• section, OH, …
• Exercises in the book.
• USA Olympiad training website: https://train.usaco.org

• Difficult HW problems prepare you for real world algorithm problems
• Grading rules are too strict

• Every week I spent hours to train TAs how to grade. The well-defined rubric
is my effort to have a systematic grading guidelines that all TAs can follow.
Without it everybody grades arbitrarily.

• Everything is not about grade! We are here to learn.
• TAs have not responded to my re-grade requests

• TAs are also humans; give them sometime.
• Send me an email or come to OH, I’ll look into your request

• What is the point of this course after all? Why do you have to
prove correctness of an algorithm?
• Often algorithms that we design are incorrect.

Approximation Alg Summary
• To design approximation Alg, always find a way to lower

bound OPT

• The best known approximation Alg for vertex cover is the
greedy.
– It has been open for 50 years to obtain a polynomial time

algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the
greedy.
– It is NP-Complete to obtain better than ln n approximation ratio

for set cover.

Dynamic Programming

Algorithmic Paradigm
Greedy: Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer: Break up a problem into two sub-problems,
solve each sub-problem independently, and combine solution to
sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping sub-problems, and build up solutions to larger and
larger sub-problems. Memorize the answers to obtain polynomial
time ALG.

Dynamic Programming History
Bellman. Pioneered the systematic study of dynamic
programming in the 1950s.

Etymology.
Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

• "it's impossible to use dynamic in a pejorative sense"

• "something not even a Congressman could object to"

Areas:
• Bioinformatics
• Control Theory
• Information Theory
• Operations Research
• Computer Science: Theory, Graphics, AI, …

Some famous DP algorithms
• Viterbi for hidden Markov Model
• Unix diff for comparing two files.
• Smith-Waterman for sequence alignment.
• Bellman-Ford for shortest path routing in networks.
• Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming Applications

Dynamic programming is nothing but algorithm design by
induction!

We just ”remember” the subproblems that we have solved
so far to avoid re-solving the same sub-problem many
times.

Dynamic Programming

Weighted Interval Scheduling

Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤!
• Two jobs compatible if they don’t overlap.
• Goal: find maximum weight subset of mutually compatible jobs.

13
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:
• Consider jobs in ascending order of finishing time
• Add job to a subset if it is compatible with prev added jobs.
OBS: Greedy ALG fails spectacularly (no approximation ratio) if
arbitrary weights are allowed:

14

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 1000

weight = 1

by finish

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a1

weight = 1000

weight = 999 a1 a1 a1 a1 a1 a1 a1 a1 a1

by weight

Weighted Job Scheduling by Induction

Suppose 1,… , 𝑛	are all jobs. Let us use induction:

IH (strong ind): Suppose we can compute the optimum job scheduling
for < 𝑛 jobs.

IS: Goal: For any n jobs we can compute OPT.
Case 1: Job n is not in OPT.
-- Then, just return OPT of 1,… , 𝑛 − 1.

Case 2: Job n is in OPT.
-- Then, delete all jobs not compatible with n and recurse.

Q: Are we done?
A: No, How many subproblems are there?
Potentially 2" all possible subsets of jobs.

15

Take best of the two

n
n-1 n-2

n-2 n-3 n-3 n-4

A Bad Example

Consider jobs n/2+1,…,n. These decisions have no impact on one
another.
How many subproblems do we get?

16
Time

1

n/2+1
2

n/2+2
3

n/2+3

n/2

n

Sorting to Reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n.
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

17
n

n-1

n-2

P(n)+1
P(n)

1

Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n.
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job n.
• Then, OPT is just the optimum 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖
So, at most 𝑛 possible subproblems.

18

Take best of the two

This is how we differentiate
from solving Maximum

Independent Set Problem

Bad Example Review

How many subproblems do we get in this sorted order?

19
Time

1

2
3

4
5

6

n-1

n

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
Let OPT(j) denote the OPT solution of 1,… , 𝑗

To solve OPT(j):
Case 1: OPT(j) has job j.
• So, all jobs i that are not compatible with j are not OPT(j)
• Let p(j) = largest index i < j such that job i is compatible with j.
• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 ∪ 𝑗 .

Case 2: OPT(j) does not select job j.
• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1)

𝑂𝑃𝑇 𝑗 = 9
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

20

This is the most important
step in design DP algorithms

Algorithm

21

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(wj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the
solution to the subproblems
Ø So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances
grows like Fibonacci sequence

22

3
4

5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Algorithm with Memoization

23

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

Memoization. Compute and Store the solution of each sub-problem
in a cache the first time that you face it. lookup as needed.

Bottom up Dynamic Programming

24

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(wj + M[p(j)], M[j-1])
}

Output M[n]

You can also avoid recusion
• recursion may be easier conceptually when you use induction

Claim: M[j] is value of OPT(j)
Timing: Easy. Main loop is O(n); sorting is O(n log n)

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

3

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

3

 4

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 7

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 77
 7

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 7

 7

 10

548

327

236

045

134

013

042

031

0

0

OPT(j)p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 7

 7

 10

