CSE 421

Dynamic Programming

Shayan Oveis Gharan

Dynamic Programming

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.

- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Dynamic Programming Applications

Areas:

- Bioinformatics
- Control Theory
- Information Theory
- Operations Research
- Computer Science: Theory, Graphics, AI, ...

Some famous DP algorithms

- Viterbi for hidden Markov Model
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming

Dynamic programming is nothing but algorithm design by induction!

We just "remember" the subproblems that we have solved so far to avoid re-solving the same sub-problem many times.

Weighted Interval Scheduling

Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_{j}
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Sorting to reduce Subproblems

IS: For jobs $1, \ldots$, n we want to compute OPT
Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$
Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not OPT
- Let $\mathrm{p}(\mathrm{n})=1$ This is how we differentiate gatible with n .
- Then,
 from solving Maximum Independent Set Problem
- Then, OPT is just the optimum $1, \ldots, n-1$

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form $1, \ldots, i$ for some i So, at most n possible subproblems.

Bad Example Review

How many subproblems do we get in this sorted order?

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$ To solve OPT(j):
Case 1: OPT(j) has job j

- So, all jobs i that are n
- Let $\mathrm{p}(\mathrm{j})=$ largest index
- So OPT $(j)=O P T(p(j)) \cup\{j\}$.

Case 2: OPT(j) does not select job j.

- Then, $\operatorname{OPT}(j)=O P T(j-1)$

$$
O P T(j)=\left\{\begin{array}{lc}
0 & \text { if } j=0 \\
\max \left(w_{j}+O P T(p(j)), O P T(j-1)\right) & \text { o.w. }
\end{array}\right.
$$

Algorithm

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and w
Sort jobs by finish times so that f(1)\leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(wi}+\mathrm{ + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```


Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems
$>$ So, we may re-solve the same problem many many times.
Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

$p(1)=0, p(j)=j-2$

Algorithm with Memoization

Memoization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and w, w, w,
Sort jobs by finish times so that f(1) \leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
for j = 1 to n
    M[j] = empty
M[0] = 0
M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max(wij + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```


Bottom up Dynamic Programming

You can also avoid recusion

- recursion may be easier conceptually when you use induction

```
Input: n, s(1),\ldots,s(n) and f(1),\ldots,f(n) and wi,\ldots,wn.
Sort jobs by finish times so that f(1) \leqf(2)\leq\cdotsf(n).
Compute p(1),p(2),\ldots,p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(wj + M[p(j)], M[j-1])
}
Output M[n]
```

Claim: $\mathrm{M}[\mathrm{j}]$ is value of $\mathrm{OPT}(\mathrm{j})$
Timing: Easy. Main loop is $\mathrm{O}(\mathrm{n})$; sorting is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$\mathrm{p}(\mathrm{j})=$ largest index $\mathrm{i}<\mathrm{j}$ such that job i is compatible with j .

Knapsack Problem

Knapsack Problem

Given n objects and a "knapsack." Item i weighs $w_{i}>0$ kilograms (an integer) and value $v_{i} \geq 0$. Knapsack has capacity of W kilograms.
Goal: fill knapsack so as to maximize total value.

Ex: OPT is $\{3,4\}$ with (weight 10) and value 36.
$\qquad$$W=11$ 1 1 2 2 5 3 3 14 4 4 22 6

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}.
Ex: $\{5,2\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Dynamic Programming: First Attempt

Let OPT(i)=Max value of subsets of items $1, \ldots, i$ of weight $\leq W$.
Case 1: OPT(i) does not select item i

- In this caes $\operatorname{OPT}(i)=\operatorname{OPT}(i-1)$

Case 2: OPT(i) selects item i

- In this case, item i does not immediately imply we have to reject other items
- The problem does not reduce to $\operatorname{OPT}(i-1)$ because we now want to pack as much value into box of weight $\leq W-w_{i}$

Conclusion: We need more subproblems, we need to strengthen IH.

Stronger DP (Strengthenning Hypothesis)

Let $O P T(i, w)=$ Max value subset of items $1, \ldots, i$ of weight $\leq w$ where $0 \leq i \leq n$ and $0 \leq w \leq W$.

Case 1: $\operatorname{OPT}(i, w)$ selects item i

- In this case, $O P T(i, w)=v_{i}+O P T\left(i-1, w^{2} w_{i}\right)$

Take best of the two
Case 2: $\operatorname{OPT}(i, w)$ does not select item i

- In this case, $\operatorname{OPT}(i, w)=O P T(i-1, w)$.

Therefore,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & \text { If } i=0 \\ \operatorname{OPT}(i-1, w) & \text { If } w_{i}>w \\ \max \left(\operatorname{OPT}(i-1, w), v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right. & \text { o.w., }\end{cases}
$$

DP for Knapsack

```
Compute-OPT (i,w)
    if \(M[i, w]==\) empty
        if (i==0)
        M \([\mathbf{i}, w]=0\)
    recursive
    else if ( \(\left.w_{i}>w\right)\)
        M[i,w]=Comp-OPT(i-1,w)
    else
        M[i,w]= max \(\left\{\operatorname{Comp-OPT}(i-1, w), v_{i}+\operatorname{Comp-OPT}\left(i-1, w-w_{i}\right)\right\}\)
    return \(M[i, w]\)
```

```
for \(w=0\) to \(W\)
    \(\mathrm{M}[0, \mathrm{w}]=0\)
for \(i=1\) to \(n\)
    for \(w=1\) to \(W\)
        if ( \(\left.w_{i}>w\right)\)
        \(\mathrm{M}[\mathrm{i}, \mathrm{w}]=\mathrm{M}[\mathrm{i}-1, \mathrm{w}]\)
        else
        \(M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}\)

\section*{DP for Knapsack}
\[
w+1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline & \(\phi\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \{1\} & 0 & & & & & & & & & & & \\
\hline \(n+1\) & \{1,2 \} & 0 & & & & & & & & & & & \\
\hline & \{ \(1,2,3\) \} & 0 & & & & & & & & & & & \\
\hline & \(\{1,2,3,4\}\) & 0 & & & & & & & & & & & \\
\hline \(\downarrow\) & \(\{1,2,3,4,5\}\) & 0 & & & & & & & & & & & \\
\hline
\end{tabular}
\[
W=11
\]
\[
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=\operatorname{m}[i-1, w] \curvearrowleft \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{DP for Knapsack}
\[
w+1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline & \(\phi\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \{ 1 \} & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(n+1\) & \{ 1,2 \} & 0 & & & & & & & & & & & \\
\hline & \{ 1, 2, 3 \} & 0 & & & & & & & & & & & \\
\hline & \(\{1,2,3,4\}\) & 0 & & & & & & & & & & & \\
\hline & \(\{1,2,3,4,5\}\) & 0 & & & & & & & & & & & \\
\hline
\end{tabular}
\[
W=11
\]
\[
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=\operatorname{m}[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{DP for Knapsack}
\[
\ldots \quad W+1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline & \(\phi\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \{1\} & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(n+1\) & \{ 1,2 \} & 0 & 1 & 6 & 7 & & & & & & & & \\
\hline & \(\{1,2,3\}\) & 0 & 1 & & & & & & & & & & \\
\hline & \(\{1,2,3,4\}\) & 0 & 1 & & & & & & & & & & \\
\hline \(\downarrow\) & \(\{1,2,3,4,5\}\) & 0 & 1 & & & & & & & & & & \\
\hline
\end{tabular}
\[
\text { OPT: }\{4,3\}
\]
\[
\text { value }=22+18=40
\]
\[
W=11
\]
\[
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{DP for Knapsack}
\[
\ldots \quad W+1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline & \(\phi\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \{1\} & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(n+1\) & \{ 1,2 \} & 0 & 1 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline & \(\{1,2,3\}\) & 0 & 1 & 6 & 7 & 7 & 18 & 19 & & & & & \\
\hline & \(\{1,2,3,4\}\) & 0 & 1 & & & & & & & & & & \\
\hline \(\downarrow\) & \(\{1,2,3,4,5\}\) & 0 & 1 & & & & & & & & & & \\
\hline
\end{tabular}

OPT: \(\{4,3\}\)
\[
\text { value }=22+18=40
\]
\(W=11\)
\[
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{DP for Knapsack}

W+1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|} 
& & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{c}
11 \\
\hline\(n+1\) \\
\end{tabular}

OPT: \(\{4,3\}\)
value \(=22+18=40\)
\(W=11\)
\[
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

\section*{DP for Knapsack}

W+1


\section*{Knapsack Problem: Running Time}

Running time: \(\Theta(n \cdot W)\)
- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:
There exists a polynomial algorithm that produces a feasible solution that has value within \(0.01 \%\) of optimum
in time Poly(n, log W).

\section*{DP Ideas so far}
- You may have to define an ordering to decrease \#subproblems
- \(\operatorname{OPT}(\mathrm{i}, \mathrm{w})\) is exactly the predicate of induction
- You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.
- This means that sometimes we may have to use two dimensional or three dimensional induction

\section*{RNA Secondary Structure}

\section*{RNA Secondary Structure}

RNA: A String \(B=b_{1} b_{2} \ldots b_{n}\) over alphabet \(\{A, C, G, U\}\).
Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA


\section*{RNA Secondary Structure (Formal)}

Secondary structure. A set of pairs \(S=\left\{\left(b_{i}, b_{j}\right)\right\}\) that satisfy:
[Watson-Crick.]
- S is a matching and
- each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.
[No sharp turns.]: The ends of each pair are separated by at least 4 intervening bases. If \(\left(b_{i}, b_{j}\right) \in S\), then \(i<j-4\).
[Non-crossing.] If \(\left(b_{i}, b_{j}\right)\) and \(\left(b_{k}, b_{1}\right)\) are two pairs in \(S\), then we cannot have \(\mathrm{i}<\mathrm{k}<\mathrm{j}<\mathrm{l}\).

Free energy: Usual hypothesis is that an RNA molecule will maximize total free energy.

Goal: Given an RNA molecule \(B=b_{1} b_{2} \ldots b_{n}\), find a secondary structure \(S\) that maximizes the number of base pairs.

\section*{Secondary Structure (Examples)}





\section*{DP: First Attempt}

First attempt. Let \(O P T(n)=\) maximum number of base pairs in a secondary structure of the substring \(b_{1} b_{2} \ldots b_{n}\).

Suppose \(b_{n}\) is matched with \(b_{t}\) in \(\operatorname{OPT}(n)\).
What IH should we use?
match \(b_{+}\)and \(b_{n}\)


Difficulty: This naturally reduces to two subproblems
- Finding secondary structure in \(b_{1}, \ldots, b_{t-1}\), i.e., OPT(t-1)
- Finding secondary structure in \(b_{t+1}, \ldots, b_{n-1}\), ???

\section*{DP: Second Attempt}

Definition: \(O P T(i, j)=\) maximum number of base pairs in a secondary structure of thê substring \(b_{i}, b_{i+1}, \ldots, b_{j}\)

The most important part of a correct DP; It fixes IH
Case 1: If \(j-i \leq 4\).
- \(\operatorname{OPT}(\mathrm{i}, \mathrm{j})=0\) by no-sharp turns condition.

Case 2: Base \(b_{j}\) is not involved in a pair.
- OPT(i, j) = OPT(i, j-1)

Case 3: Base \(b_{j}\) pairs with \(b_{t}\) for some \(i \leq t<j-4\)
- non-crossing constraint decouples resulting sub-problems
- \(O P T(i, j)=\max _{t: b_{i} \text { pairs with } b_{t}}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}\)

\section*{Recursive Code}
```

Let M[i,j]=empty for all i,j.
Compute-OPT(i,j) {
if (j-i <= 4)
return 0;
if (M[i,j] is empty)
M[i,j]=Compute-OPT (i,j-1)
for t=i to j-5 do
if (b}\mp@subsup{b}{t}{},\mp@subsup{b}{j}{}\mathrm{ is in {A-U, U-A, C-G, G-C})
M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +
Compute-OPT(t+1,j-1))
return M[j]
}

```

Does this code terminate?
What are we inducting on?

\section*{Formal Induction}

Let \(O P T(i, j)=\) maximum number of base pairs in a secondary structure of the substring \(b_{i}, b_{i+1}, \ldots, b_{j}\)
Base Case: \(\operatorname{OPT}(i, j)=0\) for all \(i, j\) where \(|j-i| \leq 4\).
IH: For some \(\ell \geq 4\), Suppose we have computed \(\operatorname{OPT}(i, j)\) for all \(i, j\) where \(|i-j| \leq \ell\).

IS: Goal: We find \(O P T(i, j)\) for all \(i, j\) where \(|i-j|=\ell+1\). Fix \(i, j\) such that \(|i-j|=\ell+1\).
Case 1: Base \(b_{j}\) is not involved in a pair.
- \(\operatorname{OPT}(\mathrm{i}, \mathrm{j})=\operatorname{OPT}(\mathrm{i}, \mathrm{j}-1)[\) this we know by IH since \(|i-(j-1)|=\ell]\)

Case 2: Base \(\mathrm{b}_{\mathrm{j}}\) pairs with \(\mathrm{b}_{\mathrm{t}}\) for some \(\mathrm{i} \leq \mathrm{t}<\mathrm{j}-4\)
- OPT \((i, j)=\max _{t: b_{i} \text { pairs with } b_{t}}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}\)

\section*{Bottom-up DP}
```

for $k=1,2, \ldots, n-1$
for $i=1,2, \ldots, n-1$
$j=i+k$
if (j-i <= 4)
M[i,j]=0;
else

```

```

 \(M[i, j]=M[i, j-1]\)
 j
 for \(t=i\) to \(j-5\) do
 if \(\left(b_{t}, b_{j}\right.\) is in \(\left.\{A-U, U-A, C-G, G-C\}\right)\)
 \(M[i, j]=\max (M[i, j], 1+M[i, t-1]+M[t+1, j-1])\)
 return \(\mathrm{M}[1, \mathrm{n}]\)
 \}

```

Running Time: \(O\left(n^{3}\right)\)

\section*{Lesson}

We may not always induct on \(i\) or \(w\) to get to smaller subproblems.

We may have to induct on \(|i-j|\) or \(i+j\) when we are dealing with more complex problems, e.g., intervals```

