
CSE 421

Dynamic Programming

Shayan Oveis Gharan

1

Dynamic Programming

Dynamic Programming History
Bellman. Pioneered the systematic study of dynamic
programming in the 1950s.

Etymology.
Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

• "it's impossible to use dynamic in a pejorative sense"

• "something not even a Congressman could object to"

Areas:
• Bioinformatics
• Control Theory
• Information Theory
• Operations Research
• Computer Science: Theory, Graphics, AI, …

Some famous DP algorithms
• Viterbi for hidden Markov Model
• Unix diff for comparing two files.
• Smith-Waterman for sequence alignment.
• Bellman-Ford for shortest path routing in networks.
• Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming Applications

Dynamic programming is nothing but algorithm design by
induction!

We just ”remember” the subproblems that we have solved
so far to avoid re-solving the same sub-problem many
times.

Dynamic Programming

Weighted Interval Scheduling

Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓 𝑗 and has weight 𝑤!
• Two jobs compatible if they don’t overlap.
• Goal: find maximum weight subset of mutually compatible jobs.

7
Time

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n.
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job n.
• Then, OPT is just the optimum 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖
So, at most 𝑛 possible subproblems.

8

Take best of the two

This is how we differentiate
from solving Maximum

Independent Set Problem

Bad Example Review

How many subproblems do we get in this sorted order?

9
Time

1

2
3

4
5

6

n-1

n

Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
Let OPT(j) denote the OPT solution of 1,… , 𝑗

To solve OPT(j):
Case 1: OPT(j) has job j.
• So, all jobs i that are not compatible with j are not OPT(j)
• Let p(j) = largest index i < j such that job i is compatible with j.
• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 ∪ 𝑗 .

Case 2: OPT(j) does not select job j.
• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1)

𝑂𝑃𝑇 𝑗 = 6
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.

10

This is the most important
step in design DP algorithms

Algorithm

11

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(wj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the
solution to the subproblems
Ø So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances
grows like Fibonacci sequence

12

3
4

5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Algorithm with Memoization

13

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

Memoization. Compute and Store the solution of each sub-problem
in a cache the first time that you face it. lookup as needed.

Bottom up Dynamic Programming

14

Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏) and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(wj + M[p(j)], M[j-1])
}

Output M[n]

You can also avoid recusion
• recursion may be easier conceptually when you use induction

Claim: M[j] is value of OPT(j)
Timing: Easy. Main loop is O(n); sorting is O(n log n)

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

3

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

3

 4

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 7

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 77
 7

548

327

236

045

134

013

042

031

0

0

OPT(j

)

p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 7

 7

 10

548

327

236

045

134

013

042

031

0

0

OPT(j)p(j)𝑤#j

Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

3

 4

 4

 6

 6

 7

 7

 10

Knapsack Problem

Knapsack Problem

Given 𝑛 objects and a "knapsack.“
Item 𝑖	weighs 𝑤𝑖	 > 	0	kilograms (an integer) and value 𝑣0 ≥ 0.
Knapsack has capacity of 𝑊 kilograms.
Goal: fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with (weight 10) and value 36.

Greedy: repeatedly add item with maximum ratio 𝑣𝑖	/	𝑤𝑖.
Ex: { 5, 2 } achieves only value = 35 Þ greedy not optimal.

26

1

Value

14
22
30

2

Weight

4
6

5 3

8

Item

1

3
4
5

2W = 11

Dynamic Programming: First Attempt

Let OPT(i)=Max value of subsets of items 1,… , 𝑖 of weight ≤ 	𝑊.

Case 1: 𝑂𝑃𝑇(𝑖)	does not select item i
 - In this caes 𝑂𝑃𝑇(𝑖) = 𝑂𝑃𝑇(𝑖 − 1)

Case 2: 𝑂𝑃𝑇(𝑖) selects item 𝑖
• In this case, item 𝑖 does not immediately imply we have to

reject other items
• The problem does not reduce to 𝑂𝑃𝑇(𝑖 − 1) because we now

want to pack as much value into box of weight ≤ 𝑊 −𝑤0

Conclusion: We need more subproblems, we need to
strengthen IH.

27

Stronger DP (Strengthenning Hypothesis)

Let 𝑂𝑃𝑇(𝑖, 𝑤) = Max value subset of items 1,… , 𝑖 of weight ≤ 𝑤 where
0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑤 ≤ 𝑊.

Case 1: 𝑂𝑃𝑇(𝑖, 𝑤) selects item 𝑖
• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑣$ + 𝑂𝑃𝑇(𝑖 − 1,𝑤 − 𝑤$)

Case 2: 𝑂𝑃𝑇 𝑖, 𝑤 does not select item 𝑖
• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑂𝑃𝑇(𝑖 − 1,𝑤).

Therefore,

28

𝑂𝑃𝑇 𝑖, 𝑤 = 6
0	
𝑂𝑃𝑇 𝑖 − 1,𝑤 	
max(𝑂𝑃𝑇 𝑖 − 1,𝑤 , 𝑣$ + 𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤$

Take best of the two

If 𝑖 = 0
If 𝑤$ > 𝑤
o.w.,

DP for Knapsack

29

for w = 0 to W
 M[0, w] = 0
for i = 1 to n
 for w = 1 to W
 if (wi > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Compute-OPT(i,w)
 if M[i,w] == empty
 if (i==0)
 M[i,w]=0
 else if (wi > w)
 M[i,w]=Comp-OPT(i-1,w)
 else
 M[i,w]= max {Comp-OPT(i-1,w), vi + Comp-OPT(i-1,w-wi)}
 return M[i, w]

recursive

Non-recursive

DP for Knapsack

30

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

0

W + 1

W = 11

if (wi > w)
 M[i, w] = M[i-1, w]
else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

DP for Knapsack

31

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

2

0

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11

if (wi > w)
 M[i, w] = M[i-1, w]
else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

DP for Knapsack

32

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1

W = 11
OPT: { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
 M[i, w] = M[i-1, w]
else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

7

DP for Knapsack

33

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W + 1

W = 11
OPT: { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
 M[i, w] = M[i-1, w]
else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

1

3

0

7

7

1

4

0

7

7

1

5

0

7

18

1

6

0

7

1

7

0

7

1

8

0

7

1

9

0

7

1

10

0

7

1

11

0

7

1

19

DP for Knapsack

34

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W + 1

W = 11
OPT: { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
 M[i, w] = M[i-1, w]
else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

3

0

7

7

7

1

4

0

7

7

7

1

5

0

7

18

18

1

6

0

7

19

22

1

7

0

7

24

24

1

8

0

7

25

28

1

9

0

7

25

1

10

0

7

25

1

11

0

7

25

1

29

DP for Knapsack

35

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

W + 1

W = 11
OPT: { 4, 3 }

value = 22 + 18 = 40

if (wi > w)
 M[i, w] = M[i-1, w]
else
 M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

Knapsack Problem: Running Time

Running time: Θ(𝑛 ⋅ 𝑊)
• Not polynomial in input size!
• "Pseudo-polynomial.“
• Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:
There exists a polynomial algorithm that produces a feasible
solution that has value within 0.01% of optimum
in time Poly(n, log W).

36

DP Ideas so far

• You may have to define an ordering to decrease
#subproblems

• OPT(i,w) is exactly the predicate of induction

• You may have to strengthen DP, equivalently the induction,
i.e., you have may have to carry more information to find the
Optimum.

• This means that sometimes we may have to use two
dimensional or three dimensional induction

37

RNA Secondary Structure

RNA Secondary Structure

RNA: A String B = b1b2…bn over alphabet { A, C, G, U }.
Secondary structure. RNA is single-stranded so it tends to loop
back and form base pairs with itself. This structure is essential
for understanding behavior of molecule.

39
G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs S = { (bi, bj) } that satisfy:
[Watson-Crick.]
• S is a matching and
• each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.
[No sharp turns.]: The ends of each pair are separated by at least 4
intervening bases. If (bi, bj) Î S, then i < j - 4.
[Non-crossing.] If (bi, bj) and (bk, bl) are two pairs in S, then we cannot
have i < k < j < l.

Free energy: Usual hypothesis is that an RNA molecule will maximize
total free energy.

Goal: Given an RNA molecule B = b1b2…bn, find a secondary structure
S that maximizes the number of base pairs.

40

approximate by number of base pairs

Secondary Structure (Examples)

41

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G
£4

base pair

DP: First Attempt

First attempt. Let 𝑂𝑃𝑇(𝑛) = maximum number of base pairs in a
secondary structure of the substring b1b2…bn.

Suppose 𝑏% is matched with 𝑏& in 𝑂𝑃𝑇 𝑛 .
What IH should we use?

Difficulty: This naturally reduces to two subproblems
• Finding secondary structure in 𝑏', … , 𝑏&(', i.e., OPT(t-1)
• Finding secondary structure in 𝑏&)', … , 𝑏%(', ???

42

1 t n

match bt and bn

DP: Second Attempt

Definition: 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary
structure of the substring 𝑏$, 𝑏$)', … , 𝑏!

Case 1: If 𝑗	 − 	𝑖 ≤ 4.
• OPT(i, j) = 0 by no-sharp turns condition.

Case 2: Base 𝑏! is not involved in a pair.
• OPT(i, j) = OPT(i, j-1)

Case 3: Base bj pairs with bt for some i £ t < j – 4
• non-crossing constraint decouples resulting sub-problems
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

&:+$,-./0	1.23	+%
{	1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) 	+ 	𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1)	}

43

The most important part of a correct DP; It fixes IH

Recursive Code

44

Let M[i,j]=empty for all i,j.

Compute-OPT(i,j){
 if (j-i <= 4)
 return 0;
 if (M[i,j] is empty)
 M[i,j]=Compute-OPT(i,j-1)
 for t=i to j-5 do
 if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
 M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +

 Compute-OPT(t+1,j-1))
 return M[j]
}

Does this code terminate?
What are we inducting on?

Formal Induction

Let 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary structure
of the substring 𝑏$, 𝑏$)', … , 𝑏!
Base Case: 𝑂𝑃𝑇(𝑖, 𝑗) = 0 for all 𝑖, 𝑗 where 𝑗 − 𝑖 ≤ 4.
IH: For some ℓ ≥ 4, Suppose we have computed 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗
where 𝑖 − 𝑗 ≤ ℓ.

IS: Goal: We find 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 where 𝑖 − 𝑗 = ℓ + 1. Fix 𝑖, 𝑗 such
that 𝑖 − 𝑗 = ℓ + 1.
Case 1: Base 𝑏! is not involved in a pair.
• OPT(i, j) = OPT(i, j-1) [this we know by IH since 𝑖 − 𝑗 − 1 = ℓ]

Case 2: Base bj pairs with bt for some i £ t < j – 4
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

&:+$,-./0	1.23	+%
{	1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) 	+ 	𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1)	}

45We know by IH since difference ≤ ℓ

Bottom-up DP

46

for k = 1, 2, …, n-1
 for i = 1, 2, …, n-1
 j = i + k
 if (j-i <= 4)
 M[i,j]=0;
 else
 M[i,j]=M[i,j-1]
 for t=i to j-5 do
 if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
 M[i,j]=max(M[i,j], 1+ M[i,t-1] + M[t+1,j-1])

 return M[1, n]
}

Running Time: 𝑂(𝑛!)

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j

Lesson

We may not always induct on 𝑖 or 𝑤 to get to smaller
subproblems.

We may have to induct on |𝑖 − 𝑗| or 𝑖 + 𝑗 when we are
dealing with more complex problems, e.g., intervals

47

