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Dynamic Programming



Dynamic Programming History
Bellman.  Pioneered the systematic study of dynamic 
programming in the 1950s.

Etymology.
Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

• "it's impossible to use dynamic in a pejorative sense"

• "something not even a Congressman could object to"



Areas:
• Bioinformatics
• Control Theory
• Information Theory
• Operations Research
• Computer Science: Theory, Graphics, AI, …

Some famous DP algorithms
• Viterbi for hidden Markov Model
• Unix diff for comparing two files.
• Smith-Waterman for sequence alignment.
• Bellman-Ford for shortest path routing in networks.
• Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming Applications



Dynamic programming is nothing but algorithm design by 
induction!

We just ”remember” the subproblems that we have solved 
so far to avoid re-solving the same sub-problem many 
times. 

Dynamic Programming



Weighted Interval Scheduling



Interval Scheduling

• Job j starts at 𝑠(𝑗) and finishes at 𝑓 𝑗  and has weight 𝑤!
• Two jobs compatible if they don’t overlap.
• Goal: find maximum weight subset of mutually compatible jobs.
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Sorting to reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT
Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)

Case 1: Suppose OPT has job n. 
• So, all jobs i that are not compatible with n are not OPT
• Let p(n) = largest index i < n such that job i is compatible with n.
• Then, we just need to find OPT of 1,… , 𝑝(𝑛)

Case 2: OPT does not select job n.
• Then, OPT is just the optimum 1,… , 𝑛 − 1

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1,… , 𝑖 for some 𝑖
So, at most 𝑛 possible subproblems.
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Take best of the two

This is how we differentiate 
from solving Maximum 

Independent Set Problem



Bad Example Review

How many subproblems do we get in this sorted order?
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Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time 𝑓 1 ≤ ⋯ ≤ 𝑓(𝑛)
Let OPT(j) denote the OPT solution of 1,… , 𝑗

To solve OPT(j):
Case 1: OPT(j) has job j. 
• So, all jobs i that are not compatible with j are not OPT(j)
• Let p(j) = largest index i < j such that job i is compatible with j.
• So 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑝 𝑗 ∪ 𝑗 .

Case 2: OPT(j) does not select job j.
• Then, 𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇(𝑗 − 1)

𝑂𝑃𝑇 𝑗 = 6
0	 if	𝑗 = 0	
max 𝑤! + 𝑂𝑃𝑇 𝑝 𝑗 , 𝑂𝑃𝑇 𝑗 − 1 	 o. w.
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This is the most important
step in design DP algorithms



Algorithm
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Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏)  and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Compute-Opt(j) {
   if (j = 0)
      return 0
   else
      return max(wj + Compute-Opt(p(j)), Compute-Opt(j-1))
}



Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the 
solution to the subproblems
Ø So, we may re-solve the same problem many many times.

Ex.  Number of recursive calls for family of "layered" instances 
grows like Fibonacci sequence
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Algorithm with Memoization
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Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏)  and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

for j = 1 to n
   M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
   if (M[j] is empty)
      M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
}

Memoization.  Compute and Store the solution of each sub-problem  
in a cache the first time that you face it. lookup as needed.



Bottom up Dynamic Programming
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Input: n, 𝒔 𝟏 ,… , 𝒔(𝒏)  and 𝒇 𝟏 ,… , 𝒇(𝒏) and 𝒘𝟏, … ,𝒘𝒏.

Sort jobs by finish times so that 𝒇 𝟏 ≤ 𝒇 𝟐 ≤ ⋯𝒇(𝒏).

Compute 𝒑(𝟏), 𝒑(𝟐), … , 𝒑(𝒏)

Iterative-Compute-Opt {
   M[0] = 0
   for j = 1 to n
      M[j] = max(wj + M[p(j)], M[j-1])
}

Output M[n]

You can also avoid recusion
• recursion may be easier conceptually when you use induction

Claim: M[j] is value of OPT(j)
Timing: Easy.  Main loop is O(n); sorting is O(n log n)



Example

Label jobs by finishing time: 𝑓 1 ≤ ⋯ ≤ 𝑓 𝑛 .
p(j) = largest index i < j such that job i is compatible with j.
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Knapsack Problem



Knapsack Problem

Given 𝑛 objects and a "knapsack.“
Item 𝑖	weighs 𝑤𝑖	 > 	0	kilograms (an integer) and value 𝑣0 ≥ 0.
Knapsack has capacity of 𝑊 kilograms.
Goal:  fill knapsack so as to maximize total value.

Ex: OPT is { 3, 4 } with (weight 10) and value 36.

Greedy:  repeatedly add item with maximum ratio 𝑣𝑖	/	𝑤𝑖.
Ex:  { 5, 2 } achieves only value = 35  Þ  greedy not optimal.
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Dynamic Programming: First Attempt

Let OPT(i)=Max value of subsets of items 1,… , 𝑖 of weight ≤ 	𝑊.

Case 1: 𝑂𝑃𝑇(𝑖)	does not select item i 
 - In this caes 𝑂𝑃𝑇(𝑖) = 𝑂𝑃𝑇(𝑖 − 1)

Case 2: 𝑂𝑃𝑇(𝑖) selects item 𝑖
• In this case, item 𝑖 does not immediately imply we have to 

reject other items
• The problem does not reduce to 𝑂𝑃𝑇(𝑖 − 1) because we now 

want to pack as much value into box of weight ≤ 𝑊 −𝑤0

Conclusion: We need more subproblems, we need to 
strengthen IH.
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Stronger DP (Strengthenning Hypothesis)

Let 𝑂𝑃𝑇(𝑖, 𝑤) = Max value subset of items 1,… , 𝑖 of weight ≤ 𝑤 where 
0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑤 ≤ 𝑊.

Case 1: 𝑂𝑃𝑇(𝑖, 𝑤) selects item 𝑖
• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑣$ + 𝑂𝑃𝑇(𝑖 − 1,𝑤 − 𝑤$)

Case 2: 𝑂𝑃𝑇 𝑖, 𝑤  does not select item 𝑖
• In this case, 𝑂𝑃𝑇 𝑖, 𝑤 = 𝑂𝑃𝑇(𝑖 − 1,𝑤).

Therefore,
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𝑂𝑃𝑇 𝑖, 𝑤 = 6
0	
𝑂𝑃𝑇 𝑖 − 1,𝑤 	
max(𝑂𝑃𝑇 𝑖 − 1,𝑤 , 𝑣$ + 𝑂𝑃𝑇 𝑖 − 1,𝑤 − 𝑤$

Take best of the two

If 𝑖 = 0
If 𝑤$ > 𝑤
o.w.,



DP for Knapsack
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for w = 0 to W
   M[0, w] = 0
for i = 1 to n
   for w = 1 to W
      if (wi > w)
         M[i, w] = M[i-1, w]
      else
         M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Compute-OPT(i,w)
   if M[i,w] == empty 
     if (i==0)
       M[i,w]=0
     else if (wi > w)
       M[i,w]=Comp-OPT(i-1,w)
     else
       M[i,w]= max {Comp-OPT(i-1,w), vi + Comp-OPT(i-1,w-wi)}        
   return M[i, w]

recursive

Non-recursive



DP for Knapsack
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DP for Knapsack
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DP for Knapsack
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DP for Knapsack
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DP for Knapsack
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DP for Knapsack
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Knapsack Problem: Running Time

Running time: Θ(𝑛 ⋅ 𝑊)
• Not polynomial in input size!
• "Pseudo-polynomial.“
• Decision version of Knapsack is NP-complete. 

Knapsack approximation algorithm:  
There exists a polynomial algorithm that produces a feasible 
solution that has value within 0.01% of optimum 
in time Poly(n, log W).
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DP Ideas so far

• You may have to define an ordering to decrease 
#subproblems

• OPT(i,w) is exactly the predicate of induction

• You may have to strengthen DP, equivalently the induction, 
i.e., you have may have to carry more information to find the 
Optimum. 

• This means that sometimes we may have to use two 
dimensional or three dimensional induction
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RNA Secondary Structure



RNA Secondary Structure

RNA: A String B = b1b2…bn over alphabet { A, C, G, U }.
Secondary structure.  RNA is single-stranded so it tends to loop 
back and form base pairs with itself. This structure is essential 
for understanding behavior of molecule.
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Ex:  GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs:  A-U, C-G



RNA Secondary Structure (Formal)

Secondary structure.  A set of pairs S = { (bi, bj) } that satisfy:
[Watson-Crick.]  
• S is a matching and 
• each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.
[No sharp turns.]:  The ends of each pair are separated by at least 4 
intervening bases.  If (bi, bj) Î S, then i < j - 4.
[Non-crossing.]  If (bi, bj)  and (bk, bl) are two pairs in S, then we cannot 
have i < k < j < l.

Free energy:  Usual hypothesis is that an RNA molecule will maximize 
total free energy.

Goal:  Given an RNA molecule B = b1b2…bn, find a secondary structure 
S that maximizes the number of base pairs.
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approximate by number of base pairs



Secondary Structure (Examples)

41

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G
£4

base pair



DP: First Attempt

First attempt. Let 𝑂𝑃𝑇(𝑛) = maximum number of base pairs in a 
secondary structure of the substring  b1b2…bn.

Suppose 𝑏% is matched with 𝑏& in 𝑂𝑃𝑇 𝑛 .
What IH should we use?

Difficulty: This naturally reduces to two subproblems
• Finding secondary structure in 𝑏', … , 𝑏&(', i.e., OPT(t-1)
• Finding secondary structure in 𝑏&)', … , 𝑏%(',   ???
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DP: Second Attempt

Definition: 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary 
structure of the substring 𝑏$, 𝑏$)', … , 𝑏!

Case 1:  If  𝑗	 − 	𝑖 ≤ 4.
• OPT(i, j) = 0 by no-sharp turns condition.

Case 2:  Base 𝑏! is not involved in a pair.
• OPT(i, j) = OPT(i, j-1)

Case 3:  Base bj pairs with bt for some i £ t < j – 4
• non-crossing constraint decouples resulting sub-problems
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

&:+$	,-./0	1.23	+%
{	1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) 	+ 	𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1)	} 
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The most important part of a correct DP; It fixes IH 



Recursive Code

44

Let M[i,j]=empty for all i,j.

Compute-OPT(i,j){
   if (j-i <= 4)
     return 0;
   if (M[i,j] is empty)
      M[i,j]=Compute-OPT(i,j-1)
      for t=i to j-5 do
         if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
           M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +          

  Compute-OPT(t+1,j-1))
   return M[j]
}

Does this code terminate?
What are we inducting on? 



Formal Induction

Let 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary structure 
of the substring 𝑏$, 𝑏$)', … , 𝑏!
Base Case: 𝑂𝑃𝑇(𝑖, 𝑗) = 0 for all 𝑖, 𝑗 where 𝑗 − 𝑖 ≤ 4.
IH: For some ℓ ≥ 4, Suppose we have computed 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 
where 𝑖 − 𝑗 ≤ ℓ.

IS: Goal: We find 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 where 𝑖 − 𝑗 = ℓ + 1. Fix 𝑖, 𝑗 such 
that 𝑖 − 𝑗 = ℓ + 1.
Case 1:  Base 𝑏! is not involved in a pair.
• OPT(i, j) = OPT(i, j-1) [this we know by IH since 𝑖 − 𝑗 − 1 = ℓ]

Case 2:  Base bj pairs with bt for some i £ t < j – 4
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

&:+$	,-./0	1.23	+%
{	1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) 	+ 	𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1)	} 

45We know by IH since difference ≤ ℓ



Bottom-up DP
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for k = 1, 2, …, n-1
   for i = 1, 2, …, n-1
     j = i + k
     if (j-i <= 4)
       M[i,j]=0;
       else
         M[i,j]=M[i,j-1]
         for t=i to j-5 do
           if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
             M[i,j]=max(M[i,j], 1+ M[i,t-1] + M[t+1,j-1])

   return M[1, n]
}

Running Time: 𝑂(𝑛!)
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Lesson

We may not always induct on 𝑖 or 𝑤 to get to smaller 
subproblems. 

We may have to induct on |𝑖 − 𝑗| or 𝑖 + 𝑗 when we are 
dealing with more complex problems, e.g., intervals
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