
CSE421: Design and Analysis of Algorithms May 2, 2024

Shayan Oveis Gharan Section 5

P1) Given a connected graph G = (V,E) with n vertices and m edges where every edge has a
positive weight we > 0, for any pair of vertices u, v define d(u, v) to denote the length of the
shortest path from u to v in G.

a) Prove that d(., .) is a metric, namely it satisfies the following three properties: (i) d(u, v) ≥ 0
for all u, v and d(u, v) = 0 only when u = v. (ii) d(u, v) = d(v, u) for all vertices u, v ∈ V .
(iii) d(u, v) + d(v, w) ≥ d(u,w) for all u, v, w ∈ V .

b) Let d∗ := maxu,v∈V d(u, v) denote the longest shortest path in G. Design an O(m log(n))
time algorithm that gives a 2-approximation to d∗, i.e., your algorithm should output a
number d̃∗ such that

d̃∗ ≤ d∗ ≤ 2d̃∗.

In this part you can use the Dijkstra’s algorithm which finds the shortest path from a given
vertex s to all vertices of G. We will discuss Dijkstra’s algorithm later in the course. You
can further use this algorithm runs in O(m log n).

Part a) (i) d(u, v) ≥ 0 holds since all edges have non-negative weights. (ii) d(u, v) = d(v, u)
since the graph is undirected, any path from u to v is also a path from v to u. (iii) holds by
composing paths: Any path from u to v can be concatenated with a path from v to w (possibly
deleting repeated vertices) to obtain a path from u to w. This gives a candidate path from u
to w and d(u,w) is the shortest one that may or may not pass v along the way.

Part b) We run the Dijkstra’s algorithm from an arbitrary vertex v. Let u be the farthest
vertex from v in the output of Dijkstra’s algorithm. we output d(u, v). Let u∗, v∗ be the
farthest vertex in G, and d∗ = d(u∗, v∗). We need to show that

d(u, v) ≤ d∗ ≤ 2d(u, v).

The first inequality, d(u, v) ≤ d∗ follows by optimality of d∗, i.e., that d∗ is the largest shortest
path among all pairs including u, v.

To prove the second inequality we used the triangle inequality of d(., .); namely:

d(u∗, v∗) ≤
(iii) of part a)

d(u∗, v) + d(v, v∗)

=
(ii)ofparta)

d(v, u∗) + d(v, v∗)

≤
u is the farthest from v

d(v, u) + d(v, u) = 2d(v, u).

P2) Suppose you are given n coins with value v1, . . . , vn dollars, and you want to change S dollars.
You can assume vi ∕= vj for all i ∕= j. Design a polynomial time algorithm that outputs the

Section 5-1



number of ways to change S dollars with the given n coins. For example, if for values 1, 2, 3, 4
we can change 6 in 2 ways as follows:

2 + 4, 1 + 2 + 3

Solution: I start by writing a wrong DP: Let OPT (S) be the number of ways to change S
dollars with coins v1, . . . , vn. One can say either OPT uses v1 or v2, . . . or vn so one can write

OPT (S) =
!

i

OPT (S − vi).

This is wrong, why? Because it double counts. For example, say v1 = 1, v2 = 2 and S = 3.
Then, we write OPT (3) = OPT (1) + OPT (2), and since OPT (1) = 1, OPT (2) = 1, we get
OPT (3) = 2. But the write answer is OPT (3) = 1. So, where is the mistake? We are double
counting 1, 2 and 2, 1.

The right way to do it is to do a two-dimensional OPT: Let OPT (s, i) be ”the number of ways
to change s dollars using only coins v1, . . . , vi”. Base Case: OPT (0, i) = 1 and OPT (s, 0) = 0
for any s > 0.

Now, we do the inductive step: We ”guess” whether coin vi used in OPT (s, i). Note that vi
can be used only if vi ≤ s. If we use coin vi then we need to change the rest of s− vi dollars
using coins v1, . . . , vi−1. So, we claim that OPT (s, i) is the sum of all of these possibilities.

OPT (s, i) =

"
OPT (s− vi, i− 1) +OPT (s, i− 1) if vi ≤ s

OPT (s, v − i) o.w.

First, we are not double counting in the above calculation: This is because whether we put vi
in or out we are counting two different approaches that to change s dollars so we don’t double
count. Second, we count all possibilities because OPT other uses or doesn’t uses vi.

The algorithm follows:

for s = 0 → S do
Set M [s, i] = empty for all 0 ≤ i ≤ n

end
Function OPT(s, i)

If s = 0 return 1 else if i = 0 return 0
If M [s, i] ∕= empty return M [s, i]
If vi ≤ s, M [s, i] = OPT (s− vi, i− 1) +OPT (s, i− 1) else M [s, i] = OPT (s, i− 1).
return M [s, i]

OPT(S,n).

Section 5-2


