CSE421: Design and Analysis of Algorithms	May 2, 2024
Shayan Oveis Gharan	Section 5

- P1) Given a connected graph G = (V, E) with *n* vertices and *m* edges where every edge has a positive weight $w_e > 0$, for any pair of vertices u, v define d(u, v) to denote the length of the shortest path from *u* to *v* in *G*.
 - a) Prove that d(.,.) is a metric, namely it satisfies the following three properties: (i) $d(u,v) \ge 0$ for all u, v and d(u, v) = 0 only when u = v. (ii) d(u, v) = d(v, u) for all vertices $u, v \in V$. (iii) $d(u, v) + d(v, w) \ge d(u, w)$ for all $u, v, w \in V$.
 - b) Let $d^* := \max_{u,v \in V} d(u,v)$ denote the longest shortest path in G. Design an $O(m \log(n))$ time algorithm that gives a 2-approximation to d^* , i.e., your algorithm should output a number \tilde{d}^* such that

$$\tilde{d}^* \le d^* \le 2\tilde{d}^*.$$

In this part you can use the Dijkstra's algorithm which finds the shortest path from a given vertex s to all vertices of G. We will discuss Dijkstra's algorithm later in the course. You can further use this algorithm runs in $O(m \log n)$.

Part a) (i) $d(u, v) \ge 0$ holds since all edges have non-negative weights. (ii) d(u, v) = d(v, u) since the graph is undirected, any path from u to v is also a path from v to u. (iii) holds by composing paths: Any path from u to v can be concatenated with a path from v to w (possibly deleting repeated vertices) to obtain a path from u to w. This gives a candidate path from u to w and d(u, w) is the shortest one that may or may not pass v along the way.

Part b) We run the Dijkstra's algorithm from an arbitrary vertex v. Let u be the farthest vertex from v in the output of Dijkstra's algorithm. we output d(u, v). Let u^*, v^* be the farthest vertex in G, and $d^* = d(u^*, v^*)$. We need to show that

$$d(u,v) \le d^* \le 2d(u,v).$$

The first inequality, $d(u, v) \leq d^*$ follows by optimality of d^* , i.e., that d^* is the largest shortest path among all pairs including u, v.

To prove the second inequality we used the triangle inequality of d(.,.); namely:

$$\begin{array}{l} d(u^*,v^*) & \leq \\ {}_{(\mathrm{iii}) \ \mathrm{of \ part \ a)}} d(u^*,v) + d(v,v^*) \\ & = \\ {}_{(ii)ofparta)} d(v,u^*) + d(v,v^*) \\ \leq \\ \mathrm{u \ is \ the \ farthest \ from \ v}} d(v,u) + d(v,u) = 2d(v,u). \end{array}$$

P2) Suppose you are given n coins with value v_1, \ldots, v_n dollars, and you want to change S dollars. You can assume $v_i \neq v_j$ for all $i \neq j$. Design a polynomial time algorithm that outputs the number of ways to change S dollars with the given n coins. For example, if for values 1, 2, 3, 4 we can change 6 in 2 ways as follows:

$$2+4, 1+2+3$$

Solution: I start by writing a wrong DP: Let OPT(S) be the number of ways to change S dollars with coins v_1, \ldots, v_n . One can say either OPT uses v_1 or v_2, \ldots or v_n so one can write

$$OPT(S) = \sum_{i} OPT(S - v_i).$$

This is wrong, why? Because it double counts. For example, say $v_1 = 1, v_2 = 2$ and S = 3. Then, we write OPT(3) = OPT(1) + OPT(2), and since OPT(1) = 1, OPT(2) = 1, we get OPT(3) = 2. But the write answer is OPT(3) = 1. So, where is the mistake? We are double counting 1, 2 and 2, 1.

The right way to do it is to do a two-dimensional OPT: Let OPT(s, i) be "the number of ways to change s dollars using only coins v_1, \ldots, v_i ". Base Case: OPT(0, i) = 1 and OPT(s, 0) = 0 for any s > 0.

Now, we do the inductive step: We "guess" whether coin v_i used in OPT(s, i). Note that v_i can be used only if $v_i \leq s$. If we use coin v_i then we need to change the rest of $s - v_i$ dollars using coins v_1, \ldots, v_{i-1} . So, we claim that OPT(s, i) is the sum of all of these possibilities.

$$OPT(s,i) = \begin{cases} OPT(s-v_i,i-1) + OPT(s,i-1) & \text{if } v_i \le s \\ OPT(s,v-i) & \text{o.w.} \end{cases}$$

First, we are not double counting in the above calculation: This is because whether we put v_i in or out we are counting two different approaches that to change s dollars so we don't double count. Second, we count all possibilities because OPT other uses or doesn't uses v_i .

The algorithm follows:

```
 \begin{split} & \text{for } s = 0 \rightarrow S \text{ do} \\ & | \quad \text{Set } M[s,i] = empty \text{ for all } 0 \leq i \leq n \\ & \text{end} \\ & \text{Function } OPT(s,i) \\ & | \quad \text{If } s = 0 \text{ return } 1 \text{ else if } i = 0 \text{ return } 0 \\ & \text{If } M[s,i] \neq empty \text{ return } M[s,i] \\ & | \quad \text{If } v_i \leq s, M[s,i] = OPT(s-v_i,i-1) + OPT(s,i-1) \text{ else } M[s,i] = OPT(s,i-1). \\ & \text{ return } M[s,i] \\ & \text{OPT}(S,n). \end{split}
```