CSE421: Design and Analysis of Algorithms

Shayan Oveis Gharan

P1) Given a connected graph $G=(V, E)$ with n vertices and m edges where every edge has a positive weight $w_{e}>0$, for any pair of vertices u, v define $d(u, v)$ to denote the length of the shortest path from u to v in G.
a) Prove that $d(.,$.$) is a metric, namely it satisfies the following three properties: (i) d(u, v) \geq 0$ for all u, v and $d(u, v)=0$ only when $u=v$. (ii) $d(u, v)=d(v, u)$ for all vertices $u, v \in V$. (iii) $d(u, v)+d(v, w) \geq d(u, w)$ for all $u, v, w \in V$.
b) Let $d^{*}:=\max _{u, v \in V} d(u, v)$ denote the longest shortest path in G. Design an $O(m \log (n))$ time algorithm that gives a 2 -approximation to d^{*}, i.e., your algorithm should output a number \tilde{d}^{*} such that

$$
\tilde{d}^{*} \leq d^{*} \leq 2 \tilde{d}^{*}
$$

In this part you can use the Dijkstra's algorithm which finds the shortest path from a given vertex s to all vertices of G. We will discuss Dijkstra's algorithm later in the course. You can further use this algorithm runs in $O(m \log n)$.

Part a) (i) $d(u, v) \geq 0$ holds since all edges have non-negative weights. (ii) $d(u, v)=d(v, u)$ since the graph is undirected, any path from u to v is also a path from v to u. (iii) holds by composing paths: Any path from u to v can be concatenated with a path from v to w (possibly deleting repeated vertices) to obtain a path from u to w. This gives a candidate path from u to w and $d(u, w)$ is the shortest one that may or may not pass v along the way.
Part b) We run the Dijkstra's algorithm from an arbitrary vertex v. Let u be the farthest vertex from v in the output of Dijkstra's algorithm. we output $d(u, v)$. Let u^{*}, v^{*} be the farthest vertex in G, and $d^{*}=d\left(u^{*}, v^{*}\right)$. We need to show that

$$
d(u, v) \leq d^{*} \leq 2 d(u, v)
$$

The first inequality, $d(u, v) \leq d^{*}$ follows by optimality of d^{*}, i.e., that d^{*} is the largest shortest path among all pairs including u, v.

To prove the second inequality we used the triangle inequality of $d(.,$.$) ; namely:$

$$
\begin{array}{r}
d\left(u^{*}, v^{*}\right) \underset{\text { (iii) of part a) }}{\leq} d\left(u^{*}, v\right)+d\left(v, v^{*}\right) \\
\underset{(\text { (ii)ofparta) }}{=} d\left(v, u^{*}\right)+d\left(v, v^{*}\right) \\
\underset{\mathrm{u} \text { is the farthest from } v}{\leq} d(v, u)+d(v, u)=2 d(v, u) .
\end{array}
$$

P2) Suppose you are given n coins with value v_{1}, \ldots, v_{n} dollars, and you want to change S dollars. You can assume $v_{i} \neq v_{j}$ for all $i \neq j$. Design a polynomial time algorithm that outputs the
number of ways to change S dollars with the given n coins. For example, if for values $1,2,3,4$ we can change 6 in 2 ways as follows:

$$
2+4,1+2+3
$$

Solution: I start by writing a wrong DP: Let $\operatorname{OPT}(S)$ be the number of ways to change S dollars with coins v_{1}, \ldots, v_{n}. One can say either OPT uses v_{1} or v_{2}, \ldots or v_{n} so one can write

$$
O P T(S)=\sum_{i} O P T\left(S-v_{i}\right)
$$

This is wrong, why? Because it double counts. For example, say $v_{1}=1, v_{2}=2$ and $S=3$. Then, we write $O P T(3)=O P T(1)+O P T(2)$, and since $O P T(1)=1, O P T(2)=1$, we get $O P T(3)=2$. But the write answer is $O P T(3)=1$. So, where is the mistake? We are double counting 1,2 and 2,1 .
The right way to do it is to do a two-dimensional OPT: Let $O P T(s, i)$ be "the number of ways to change s dollars using only coins v_{1}, \ldots, v_{i} ". Base Case: $\operatorname{OPT}(0, i)=1$ and $\operatorname{OPT}(s, 0)=0$ for any $s>0$.
Now, we do the inductive step: We "guess" whether coin v_{i} used in $\operatorname{OPT}(s, i)$. Note that v_{i} can be used only if $v_{i} \leq s$. If we use coin v_{i} then we need to change the rest of $s-v_{i}$ dollars using coins v_{1}, \ldots, v_{i-1}. So, we claim that $O P T(s, i)$ is the sum of all of these possibilities.

$$
O P T(s, i)= \begin{cases}O P T\left(s-v_{i}, i-1\right)+O P T(s, i-1) & \text { if } v_{i} \leq s \\ O P T(s, v-i) & \text { o.w. }\end{cases}
$$

First, we are not double counting in the above calculation: This is because whether we put v_{i} in or out we are counting two different approaches that to change s dollars so we don't double count. Second, we count all possibilities because OPT other uses or doesn't uses v_{i}.
The algorithm follows:

```
for \(s=0 \rightarrow S\) do
    Set \(M[s, i]=\) empty for all \(0 \leq i \leq n\)
end
Function \(\operatorname{OPT}(s, i)\)
    If \(s=0\) return 1 else if \(i=0\) return 0
    If \(M[s, i] \neq\) empty return \(M[s, i]\)
    If \(v_{i} \leq s, M[s, i]=O P T\left(s-v_{i}, i-1\right)+O P T(s, i-1)\) else \(M[s, i]=O P T(s, i-1)\).
        return \(M[s, i]\)
OPT(S,n).
```

