CSE421: Design and Analysis of Algorithms	May 2, 2024
Shayan Oveis Gharan	Section 5

- P1) Given a connected graph G = (V, E) with *n* vertices and *m* edges where every edge has a positive weight $w_e > 0$, for any pair of vertices u, v define d(u, v) to denote the length of the shortest path from *u* to *v* in *G*.
 - a) Prove that d(.,.) is a metric, namely it satisfies the following three properties: (i) $d(u,v) \ge 0$ for all u, v and d(u, v) = 0 only when u = v. (ii) d(u, v) = d(v, u) for all vertices $u, v \in V$. (iii) $d(u, v) + d(v, w) \ge d(u, w)$ for all $u, v, w \in V$.
 - b) Let $d^* := \max_{u,v \in V} d(u,v)$ denote the longest shortest path in G. Design an $O(m \log(n))$ time algorithm that gives a 2-approximation to d^* , i.e., your algorithm should output a number \tilde{d}^* such that

$$\tilde{d}^* \le d^* \le 2\tilde{d}^*.$$

In this part you can use the Dijkstra's algorithm which finds the shortest path from a given vertex s to all vertices of G. We will discuss Dijkstra's algorithm later in the course. You can further use this algorithm runs in $O(m \log n)$.

P2) Suppose you are given n coins with value v_1, \ldots, v_n dollars, and you want to change S dollars. You can assume $v_i \neq v_j$ for all $i \neq j$. Design a polynomial time algorithm that outputs the number of ways to change S dollars with the given n coins. For example, if for values 1, 2, 3, 4 we can change 6 in 2 ways as follows:

$$2+4, 1+2+3$$