CSE421: Design and Analysis of Algorithms

P1) Given a connected graph $G=(V, E)$ with n vertices and m edges where every edge has a positive weight $w_{e}>0$, for any pair of vertices u, v define $d(u, v)$ to denote the length of the shortest path from u to v in G.
a) Prove that $d(.,$.$) is a metric, namely it satisfies the following three properties: (i) d(u, v) \geq 0$ for all u, v and $d(u, v)=0$ only when $u=v$. (ii) $d(u, v)=d(v, u)$ for all vertices $u, v \in V$. (iii) $d(u, v)+d(v, w) \geq d(u, w)$ for all $u, v, w \in V$.
b) Let $d^{*}:=\max _{u, v \in V} d(u, v)$ denote the longest shortest path in G. Design an $O(m \log (n))$ time algorithm that gives a 2 -approximation to d^{*}, i.e., your algorithm should output a number \tilde{d}^{*} such that

$$
\tilde{d}^{*} \leq d^{*} \leq 2 \tilde{d}^{*} .
$$

In this part you can use the Dijkstra's algorithm which finds the shortest path from a given vertex s to all vertices of G. We will discuss Dijkstra's algorithm later in the course. You can further use this algorithm runs in $O(m \log n)$.

P2) Suppose you are given n coins with value v_{1}, \ldots, v_{n} dollars, and you want to change S dollars. You can assume $v_{i} \neq v_{j}$ for all $i \neq j$. Design a polynomial time algorithm that outputs the number of ways to change S dollars with the given n coins. For example, if for values $1,2,3,4$ we can change 6 in 2 ways as follows:

$$
2+4,1+2+3
$$

