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CSE 421

Introduction to Algorithms

Richard Anderson

Lecture 10,  Winter 2024

Divide and Conquer
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Announcements

• Divide and Conquer and 
Recurrences
– Recurrence Techniques

– Fast Matrix Multiplication

– Counting Inversions (5.3)

– Closest Pair (5.4)

– Multiplication (5.5)

– Quicksort and Median Finding

• Dynamic Programming

• Midterm,  Friday,  February 9
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Recurrence Analysis

• Solution methods

– Unrolling recurrence

– Guess and verify

– Plugging in to a “Master Theorem”

• T(n) = a T(n/b) + O(nd)

– T(n) = O(nd) if d > logb a

– T(n) = O(nd log n)         if d = logb a

– T(n) = O(nlogba) if d < logb a
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T(n) ≤ T(3n/4) + T(n/5) + 20 n

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

| r    s |    | a    b|   |e    g|

| t    u |    | c    d|   | f    h|

r  = ae + bf

s  = ag + bh

t  =  ce + df

u = cg + dh

A N x N matrix can be viewed as 

a 2 x 2 matrix with entries that 

are (N/2) x (N/2) matrices. 

The recursive matrix 

multiplication algorithm 

recursively multiplies the       

(N/2) x (N/2) matrices and 

combines them using the 

equations for multiplying 2 x 2 

matrices

=
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Recursive Matrix Multiplication

• How many recursive calls are made at each 

level?

– 8,  for the multiplication of n/2 X n/2 submatrices

• How much work in combining the results?

– O(n2), for matrix addition and copying matrices

• What is the recurrence?

– T(n) = 8 T(n/2) + n2;    T(2) = 1;
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T(n) = 8 T(n/2) + n2
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n

n/2 n/2 n/2 n/2 n/2 n/2 n/2 n/2
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T(n) = 4T(n/2) + n
Total Work

n/4n/4 n/4 n/4 n/4n/4 n/4 n/4 n/4n/4 n/4 n/4n/4n/4 n/4 n/4

n/2 n/2 n/2 n/2

n
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T(n) = 2T(n/2) + n2
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T(n) = 2T(n/2) + n1/2
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Recurrences

• Three basic behaviors

– Dominated by initial case

– Dominated by base case

– All cases equal – we care about the depth
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What you really need to know 

about recurrences

• Work per level changes geometrically with 

the level

• Geometrically increasing (x > 1)

– The bottom level wins

• Geometrically decreasing  (x < 1)

– The top level wins

• Balanced (x = 1)

– Equal contribution

11

Classify the following recurrences

(Increasing, Decreasing, Balanced)

• T(n) = n + 5T(n/8)

• T(n) = n + 9T(n/8)

• T(n) = n2 + 4T(n/2)

• T(n) = n3 + 7T(n/2)

• T(n) = n1/2 + 3T(n/4)
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Strassen’s Algorithm

Multiply 2 x 2 Matrices:

| r    s |    | a    b|   |e    g|

| t     u|    | c    d|   | f    h|
=

r = p1 + p2 – p4 + p6

s = p4 + p5

t = p6 + p7

u = p2 - p3 + p5 - p7

Where:

p1 = (b – d)(f + h)

p2= (a + d)(e + h)

p3= (a – c)(e + g)

p4= (a + b)h

p5= a(g – h)

p6= d(f – e)

p7= (c + d)e

From AHU 1974

Recurrence for Strassen’s 

Algorithm

• T(n) = 7 T(n/2) + cn2

• What is the runtime?

log2 7 = 2.8073549221
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Strassen’s Algorithm

• Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 
submatrices

• Use Strassen’s trick to multiply 2 x 2 matrices with 7 
multiplies

• Base case standard multiplication for single entries

• Recurrence:  T(n) = 7 T(n/2) + cn2

• Solution is O(7log n)= O(nlog 7) which is about O(n2.807)

• Practical for n ~ 64

• Standard trick – switch to normal algorithm for small
values of n
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Divide and Conquer Algorithms

• Split into sub problems
• Recursively solve the problem
• Combine solutions

• Make progress in the split and combine stages
– Quicksort – progress made at the split step
– Mergesort – progress made at the combine step

• D&C Algorithms
– Strassen’s Algorithm – Matrix Multiplication
– Inversions
– Median
– Closest Pair
– Integer Multiplication
– FFT

16

Inversion Problem

• Let a1, . . . an be a permutation of 1 . . n

• (ai, aj) is an inversion if i < j and ai > aj

• Problem: given a permutation, count the number 

of inversions

• This can be done easily in O(n2) time

– Can we do better?

4, 6, 1, 7, 3, 2, 5
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Application

• Counting inversions can be use to 

measure how close ranked preferences 

are

– People rank 20 movies, based on their 

rankings you cluster people who like that 

same type of movie
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Counting Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

Count inversions on lower half

Count inversions on upper half

Count the inversions between the halves

19

11 12 4 1 7 2 3 15

11 12 4 1 7 2 3 15

9 5 16 8 6 13 10 14

9 5 16 8 6 13 10 14

Count the Inversions

11 12 4 1 7 2 3 15 9 5 16 8 6 13 10 14

5 12 3

15 10

19

8 6

44
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Problem – how do we count inversions 

between sub problems in O(n) time?

• Solution – Count inversions while merging

1 2 3 4 7 11 12 15 5 6 8 9 10 13 14 16

Standard merge algorithm – add to inversion count 

when an element is moved from the upper array to the 

solution
21

Use the merge algorithm to count 

inversions

1 4 11 12 2 3 7 15

5 8 9 16 6 10 13 14

Indicate the number of inversions for each

element detected when merging
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Inversions

• Counting inversions between two sorted lists
– O(1) per element to count inversions

• Algorithm summary
– Satisfies the “Standard recurrence” 

– T(n) = 2 T(n/2) + cn

x x x x x x x x y y y y y y y y

z z z z z z z z z z z z z z z z

23

Closest Pair Problem (2D)

• Given a set of points find the pair of points 

p, q that minimizes dist(p, q)
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Divide and conquer

• If we solve the problem on two subsets, 

does it help?  (Separate by median x 

coordinate)

d1 d2
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Packing Lemma

Suppose that the minimum distance between 

points is at least d, what is the maximum number of 

points that can be packed in a ball of radius d?
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Combining Solutions

• Suppose the minimum separation from the 

sub problems is d

• In looking for cross set closest pairs, we 

only need to consider points with d of the 

boundary

• How many cross border interactions do we 

need to test?
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A packing lemma bounds the 

number of distances to check

d
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Details

• Preprocessing: sort points by y

• Merge step

– Select points in boundary zone

– For each point in the boundary
• Find highest point on the other side that is at most 
d above

• Find lowest point on the other side that is at most d
below

• Compare with the points in this interval (there are 
at most 6)
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Identify the pairs of points that are compared 

in the merge step following the recursive calls

30
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Algorithm run time

• After preprocessing:

– T(n) = cn + 2 T(n/2)
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Integer Arithmetic

9715480283945084383094856701043643845790217965702956767

+   1242431098234099057329075097179898430928779579277597977

2095067093034680994318596846868779409766717133476767930

X   5920175091777634709677679342929097012308956679993010921

Runtime for standard algorithm to add two n digit numbers:

Runtime for standard algorithm to multiply two n digit numbers:
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Recursive Multiplication Algorithm 

(First attempt)

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy = (x1 2
n/2 + x0) (y1 2

n/2 + y0)

= x1y1 2n + (x1y0 + x0y1)2
n/2 + x0y0

Recurrence:

Run time:
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Simple algebra

x = x1 2
n/2 + x0

y = y1 2
n/2 + y0

xy =  x1y1 2n + (x1y0 + x0y1) 2
n/2 + x0y0

p = (x1 + x0)(y1 + y0) = x1y1 + x1y0 + x0y1 + x0y0
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Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let   x = x1 2n/2 + x0 and  y = y1 2n/2 + y0

Recursively compute

a = x1y1

b = x0y0

p = (x1 + x0)(y1 + y0)  

Return a2n + (p – a – b)2n/2 + b

Recurrence:  T(n) = 3T(n/2) + cn

log2 3 = 1.58496250073…
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