

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing (x > 1)

 The bottom level wins
- Geometrically decreasing (x < 1)
 The top level wins
- Balanced (x = 1)
 - Equal contribution

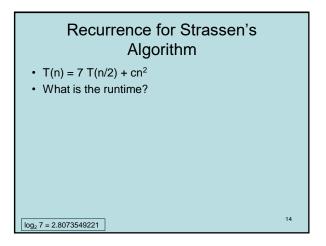
11

Classify the following recurrences (Increasing, Decreasing, Balanced)

- T(n) = n + 5T(n/8)
- T(n) = n + 9T(n/8)
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$

12

Strassen's Algorithm	
Multiply 2 x 2 Matrices: r s ₌ a b e g t u c d f h	Where: $p_1 = (b - d)(f + h)$ $p_2 = (a + d)(e + h)$ $p_3 = (a - c)(e + g)$
$r = p_1 + p_2 - p_4 + p_6$ $s = p_4 + p_5$ $t = p_6 + p_7$ $u = p_2 - p_3 + p_5 - p_7$	$p_4 = (a + b)h$ $p_5 = a(g - h)$ $p_6 = d(f - e)$ $p_7 = (c + d)e$ From AHU 1974



Strassen's Algorithm

- Treat n x n matrices as 2 x 2 matrices of n/2 x n/2 submatrices
- Use Strassen's trick to multiply 2 x 2 matrices with 7
 multiplies
- · Base case standard multiplication for single entries
- Recurrence: $T(n) = 7 T(n/2) + cn^2$
- Solution is $O(7^{\log n}) = O(n^{\log 7})$ which is about $O(n^{2.807})$
- Practical for n ~ 64
- Standard trick switch to normal algorithm for small values of n

15

Divide and Conquer Algorithms

- Split into sub problems
- Recursively solve the problem
- Combine solutions
- Make progress in the split and combine stages

 Quicksort progress made at the split step
 Mergesort progress made at the combine step
- Mergesort progress made at the combine step
 D&C Algorithms
- Strassen's Algorithm Matrix Multiplication
 Inversions
- Median
- Closest Pair
- Integer Multiplication
- FFT

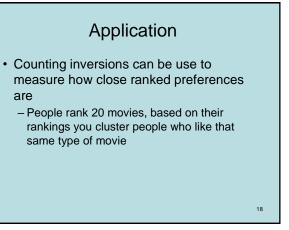
Inversion Problem

- Let $a_1, \ldots a_n$ be a permutation of $1 \ldots n$
- (a_i, a_i) is an inversion if i < j and a_i > a_i

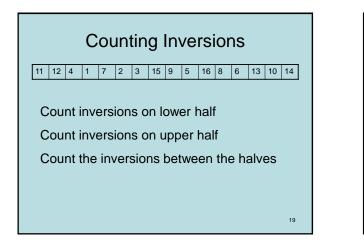
4, 6, 1, 7, 3, 2, 5

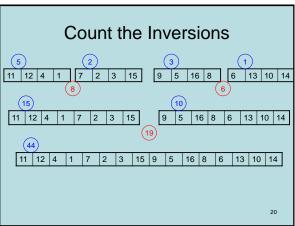
- Problem: given a permutation, count the number of inversions
- This can be done easily in O(n²) time
 Can we do better?

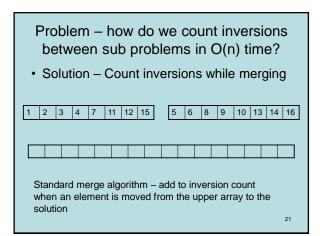
17

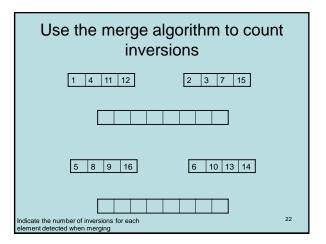


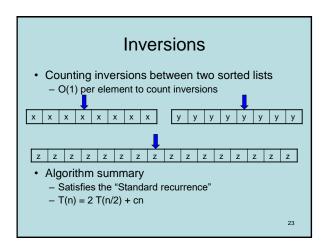
16

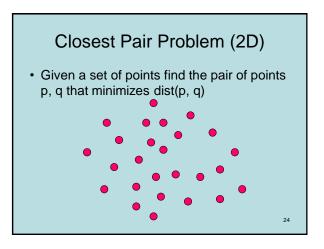


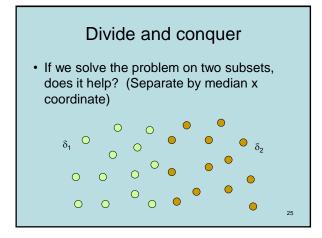


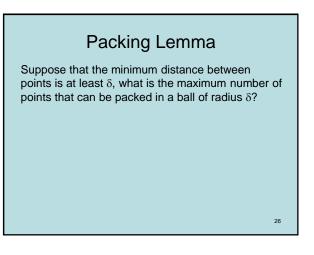






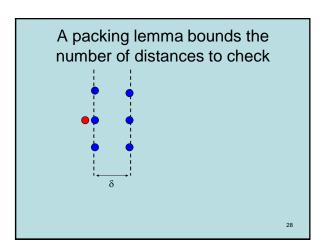






Combining Solutions

- Suppose the minimum separation from the sub problems is $\boldsymbol{\delta}$
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

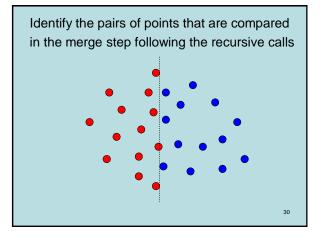


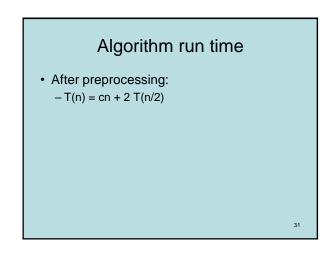
Details

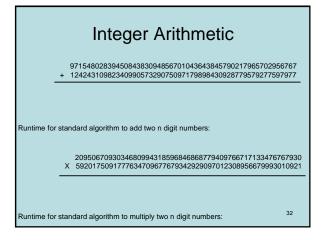
- · Preprocessing: sort points by y
- Merge step
 - Select points in boundary zone
 - For each point in the boundary
 - Find highest point on the other side that is at most δ above
 - Find lowest point on the other side that is at most $\boldsymbol{\delta}$ below
 - Compare with the points in this interval (there are at most 6)

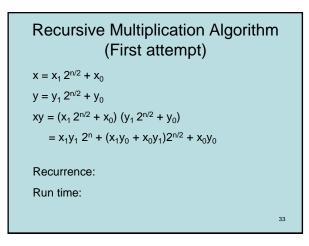
29

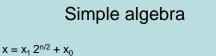
27











 $y = y_1 2^{n/2} + y_0$ $xy = x_1y_1 2^n + (x_1y_0 + x_0y_1) 2^{n/2} + x_0y_0$

 $p = (x_1 + x_0)(y_1 + y_0) = x_1y_1 + x_1y_0 + x_0y_1 + x_0y_0$

