CSE 421

Introduction to Algorithms
Richard Anderson
Lecture 16
Shortest Paths with Dynamic Programming

Announcements

- Dynamic Programming Reading:
- 6.8 Shortest Paths (Bellman-Ford)
- Network Flow Reading
-7.1-7.3, Netw ork Flow Problem and Algorithms
- 7.5-7.12, Netw ork Flow Applications

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- O(m log n) time, positive cost edges
- Directed Acyclic Graphs
- O(n + m), Topological Sort + DP
- Bellman-Ford Algorithm
- O(mn) time for graphs which can have negative cost edges

Shortest paths with a fixed number of edges

- Find the shortest path from s to w with exactly k edges

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most n -1 edges

Express as a recurrence

- Compute distance from starting vertex s
- $\operatorname{Opt}_{k}(w)=\min _{x}\left[O p t_{k-1}(x)+C_{x w}\right]$
- $\operatorname{Opt}_{0}(w)=0$ if $w=s$ and infinity otherwise

Algorithm, Version 1

for each w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[0, \mathrm{~s}]=0$;
for $i=1$ to $n-1$
for each w
$M[i, w]=\min _{x}(M[i-1, x]+\operatorname{cost}[x, w]) ;$

Algorithm, Version 2

for each w
$\mathrm{M}[0, w]=$ infinity;
$\mathrm{M}[0, \mathrm{~s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
for each w
$M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right) ;$

Example:

10

Correctness Proof for Algorithm 3

- Key lemma - at the end of iteration i , for all w, M[w] $\leq M[i, w]$;

Algorithm, Version 4

for each w

$M[w]=$ infinity;
$\mathrm{M}[\mathrm{s}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w

for each x

if $(M[w]>M[x]+\operatorname{cost}[x, w])$
$P[w]=x ;$
$M[w]=M[x]+\operatorname{cost}[x, w] ;$

Theorem

If the pointer graph has a cycle, then the graph has a negative cost cycle

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

What about finding Longest

 Paths- Can we just change Min to Max?

Finding negative cost cycles

- What if you want to find negative cost cycles?

Foreign Exchange Arbitrage

