
Markov Models

Probabilistic models to analyze the structure of a sequence

Based on Chapter 3 from Durbin, Eddy, Krogh, and Mitchison’s book

Martin Tompa

CSE 427: Computational Biology

February 11, 2010

1 CpG islands

We start with a motivating example, “CpG islands”. (Here, CpG denotes the dinucleotide
5′ CG 3′, where the p stands for the phosphate on the DNA backbone between these two
bases.) In the human genome, the C in the dinucleotide CpG is often methylated, and from
there the dinucleotide mutates to TpG at a higher than usual rate. The result is that the
dinucleotide CpG is rarer than expected, given the independent probabilities of C and G.

However, methylation of DNA is suppressed in certain short regions, such as the pro-
moters of genes. Therefore the frequency of CpG is much higher in promoter regions than
elsewhere in the genome. These “CpG islands”, typically hundreds or thousands of basepairs
long, are important statistical signals for predicting gene starts.

This leads to two computational questions:

1. Given a chromosome sequence, how can you predict the CpG islands?

2. Given a short sequence, how can you predict whether or not it is from a CpG island?

We start with the second, simpler question, called the “classification” problem.

2 Markov chains

Since we are interested in dinucleotides, we need a probabilistic model of DNA sequences
in which the probability of a character depends on the identity of the previous character.
A DNA Markov chain is a directed graph with a vertex (“state”) for each nucleotide A, C,

1

G, T, and a directed edge with transition probability aGT = Pr(xi = T | xi−1 = G), and
similarly for the other 15 dinucleotides, where x = x1x2 . . . xL is a DNA sequence.

From this definition,

Pr(x1x2 . . . xL) = Pr(x1) Pr(x2 | x1) Pr(x3 | x2) . . . Pr(xL | xL−1)

= Pr(x1)ax1x2
ax2x3

. . . axL−1xL
.

To avoid the inhomogeneity of the Pr(x1) factor, it is convenient to add a fifth state called 0
with a0T = Pr(x1 = T), etc., and to define x0 = 0. With this convention, Pr(x1x2 . . . xL) =
ax0x1

ax1x2
ax2x3

. . . axL−1xL
.

2.1 Classification using Markov chains

Given training data consisting of “positive” examples (a number of CpG islands) and “nega-
tive” examples (a number of “background”, non-CpG-island sequences), Durbin et al. trained
two Markov chains denoted + and − according to the following formulas:

a+
GT =

n+
GT

∑

s∈{A,C,G,T} n+
Gs

,

where n+
GT is the count of GpT in the positive training data, and similarly for each of the

other 15 dinucleotides and for the negative training data. The two resulting Markov chains
are shown in matrices on page 50 of Durbin et al. Note in these tables, for example, that
a+

CG ≫ a−
CG.

To combine these two Markov chains for the classification problem, use a log likelihood

ratio:

LLR(x1x2 . . . xL) = log2

Pr(x1x2 . . . xL | model +)

Pr(x1x2 . . . xL | model −)

= log2

(

a+
x0x1

a−
x0x1

a+
x1x2

a−
x1x2

· · ·
a+

xL−1xL

a−
xL−1xL

)

= log2

a+
x0x1

a−
x0x1

+ log2

a+
x1x2

a−
x1x2

+ · · · + log2

a+
xL−1xL

a−
xL−1xL

.

From the two Markov chain transition probability matrices, you can compute a 4 × 4 ma-

trix with entries log2
a+

rs

a−

rs

, for each of the 16 possible dinucleotides rs. Then computing

LLR(x1x2 . . . xL) is a simple matter of looking up and adding L entries from this matrix.

Figure 3.2 from Durbin et al. is a histogram of values of LLR(x) for test data, where
the score LLR(x) is normalized by dividing by the length of the sequence x, resulting in the
units “bits per nucleotide”.

2

3 Hidden Markov models (HMMs)

We turn now to the other motivating problem from Section 1: given a chromosome sequence,
how can you predict which portions are CpG islands? We will combine the + and − Markov
chains from Section 2.1 into a single model with 8 states A+, C+, G+, T+, A−, C−, G−,
T−, with a small probability of transition from any + to any − state, and even smaller
probability of transition from any − to any + state. Given a DNA sequence x generated by
this probabilistic model, it is no longer possible to tell if a character C (say) came from the
state C+ or from the state C−: the state is a “hidden variable”.

This means we now need to distinguish between the sequence of states and the sequence
of symbols generated. A path π is a sequence of states, so that ajk = Pr(πi = k | πi−1 = j),
again with the convention π0 = 0. In any state k, a symbol b is “emitted” with emission

probability ek(b) = Pr(xi = b | πi = k). In the CpG island example, eC+
(C) = 1, eC+

(A) = 0,
etc., but there can be more interesting emission probabilities in other HMMs, as we will see
in the next example.

3.1 The occasionally dishonest casino example

This casino occasionally switches from using a fair die to a loaded (biased) die according to
a HMM shown on page 54 of Durbin et al. If you were to observe just the outcomes of the
die, what would be hidden is whether it is the fair or loaded die that is being used. We want
to estimate this from just the outcomes of the die. Figure 3.5 shows one possible sequence of
die outcomes that could have been generated from the HMM, the hidden state information
that went along with that emitted sequence, and predictions (made without knowledge of
the hidden state information) of which die was likely to have been used. These predictions
were made according to the algorithm in the next section.

3.2 Finding the most probable state path: the Viterbi algorithm

Given an HMM and a sequence x of emitted symbols, the Viterbi algorithm calculates the
most probable path π. It works by dynamic programming.

Let vk(i) be the probability of the most probable path that ends in state k when xi is
emitted. Then

v0(0) = 1,

vk(0) = 0 for k 6= 0,

vk(i) = ek(xi) max
j

(vj(i − 1)ajk) for i > 0.

To find the most probable path itself (rather than just its probability), trace backwards as
in optimal alignment: if state k is the most probable when xi is emitted, then the state j

3

that maximizes vj(i − 1)ajk is the most probable when xi−1 is emitted.

Go back and look at the Viterbi predictions in Figure 3.5 of Durbin et al. and compare
them to the hidden states shown in that figure.

3.3 Computing the full distribution of state paths: the forward-
backward algorithm

There are exponentially many (2O(L)) paths of length L through an HMM, even if there are
only two states as in the dishonest casino example. Because of this, the average probability
of a single path is exponentially small (2−L for a 2-state HMM), and the probability of even
the most probable path (which is what the Viterbi algorithm computes) may not be much
greater. It is not very informative to know the single most probable path, if the probability
of following that path through the HMM is negligible.

Because of these considerations, we now discuss how to compute the full “posterior” prob-
ability distribution Pr(πi = k | x), for every i and k. This is done by the combination of two
algorithms, called the forward and backward algorithms. Each is a dynamic programming
algorithm quite similar to the Viterbi algorithm.

3.3.1 Forward algorithm

Let fk(i) = Pr(x1x2 . . . xi & πi = k). Then

f0(0) = 1,

fk(0) = 0 for k 6= 0,

fk(i) = ek(xi)
∑

j

fj(i − 1)ajk for i > 0.

Analogous to the start state 0, it is convenient to have a distinguished end state ε for
which akε = Pr(πL+1 = ε | πL = k) is the probability that the path ends when in state k.
Then, from the definition of fk(L),

Pr(x1x2 . . . xL & πL+1 = ε) =
∑

k

fk(L)akε . (1)

3.3.2 How the forward algorithm contributes to the posterior prob-
ability

Let x = x1x2 . . . xL. The posterior probability distribution that is our goal is

Pr(πi = k | x & πL+1 = ε).

4

By Bayes’ Theorem,

Pr(πi = k | x & πL+1 = ε) Pr(x & πL+1 = ε)

= Pr(x & πL+1 = ε & πi = k)

= Pr(x1x2 . . . xi & πi = k) Pr(xi+1 . . . xL & πL+1 = ε | x1x2 . . . xi & πi = k)

= Pr(x1x2 . . . xi & πi = k) Pr(xi+1 . . . xL & πL+1 = ε | πi = k)

= fk(i) Pr(xi+1 . . . xL & πL+1 = ε | πi = k) .

Let bk(i) = Pr(xi+1 . . . xL & πL+1 = ε | πi = k). Then

Pr(πi = k | x & πL+1 = ε) =
fk(i)bk(i)

Pr(x & πL+1 = ε)

=
fk(i)bk(i)

∑

k fk(L)akε

(2)

by Equation (1).

All that remains to compute the posterior probability via Equation (2), then, is to show
how to compute bk(i). This is done by the backward algorithm.

3.3.3 Backward algorithm

The backward algorithm is dual to the forward algorithm, starting at the end of the sequence
x and working backwards.

bk(L) = akε,

bk(i) =
∑

j

akjej(xi+1)bj(i + 1) for i < L.

Note that you could calculate bk(i) using just the forward algorithm (similar to the way
it is used in Equation (1)), but it would take time Θ(L2) instead of time Θ(L) to compute
it for all values of i. That is, you would lose the efficiency benefit of dynamic programming.

3.3.4 An example

Figure 3.6 of Durbin et al. shows the result of the forward-backward algorithm on the
same sequence of die rolls given in Figure 3.5. One would predict the fair die whenever the
posterior probability curve is above the horizontal line Pr(fair) = 1/2 and the loaded die
whenever the curve is below that line. Notice that, unlike the Viterbi prediction in Figure
3.5, the forward-backward prediction in Figure 3.6 captures the third fair die stretch and
the fourth loaded die stretch.

5

3.4 Parameter estimation for HMMs

The HMM training data needed to estimate the parameters ajk and ej(b) consists of a set
of sequences for which the path through the HMM is known. For the CpG island problem,
these would be genomic sequences with CpG islands labeled. For the gene prediction problem,
these would be genomic sequences with exons and introns labeled.

Let Ajk be the number of times the training sequences traverse the directed edge (j, k)
of the HMM, and let Ej(b) be the number of times the training sequences emit b when in
state j. Then set

ajk =
Ajk

∑

k′ Ajk′

,

ej(b) =
Ej(b)

∑

b′ Ej(b′)
.

This method of estimation of ajk is exactly the same as was used for Markov chains in Section
2.1.

What if the training data never uses state j? Then ajk and ej(b) would be undefined. The
solution is to modify Ajk and Ej(b) by adding to them small “pseudocounts”. A reasonable
pseudocount to add to each Ajk is the “prior probability” of making the transition to state
k. In the CpG island problem, it would be reasonable to use 1/4 for each k in the same
component as j, that is, either j and k are both + states or both − states.

References

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G., Biological Sequence Analysis: Prob-

abilistic models of proteins and nucleic acids. Cambridge University Press, 1998.

6

